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Abstract v

ABSTRACT 

Large collections of electronic patient records contain a broad range of clinical 

information highly relevant for data analysis. However, they are maintained primarily 

for patient administration, and automated methods are required to extract valuable 

knowledge for predictive, preventive, personalized and participatory medicine. 

Sequential pattern mining is a fundamental task in data mining which can be used to 

find statistically relevant, non-trivial temporal dependencies of events such as disease 

comorbidities. This works objective is to use this mining technique to identify disease 

associations based on ICD-9-CM codes data of the entire Taiwanese population 

obtained from Taiwan’s National Health Insurance Research Database.  

This thesis reports the development and implementation of the Disease Pattern 

Miner – a pattern mining framework in a medical domain. The framework was 

designed as a Web application which can be used to run several state-of-the-art 

sequence mining algorithms on electronic health records, collect and filter the results 

to reduce the number of patterns to a meaningful size, and visualize the disease 

associations as an interactive model in a specific population group. This may be crucial 

to discover new disease associations and offer novel insights to explain disease 

pathogenesis. A structured evaluation of the data and models are required before 

medical data-scientist may use this application as a tool for further research to get a 

better understanding of disease comorbidities. 
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1.  INTRODUCTION 

Rapidly evolving information and computer technology have transformed 

healthcare organizations by improving health services and knowledge management 

infrastructure. Large amounts of data, driven by record keeping, compliance, and 

regulatory requirements, and patient care is collected and accessible electronically. 

Data mining provides useful techniques to automatically extract valuable, non-trivial 

knowledge or find interesting patterns in the available datasets. Sequential pattern 

mining is a fundamental task in data mining to analyze sequences of events. The 

objective of this project is utilizing the methods of sequential pattern mining in a 

domain-specific interactive knowledge discovery framework. 

1.1 BACKGROUND 

Epidemiology is the study of the distribution and determinants of health-related 

states or events, health problems, and their comorbidities. Many data-driven analyses 

on Electronic Health Record (EHR) have shown benefits for clinical practice. In 

particular, this data-driven analysis can broadly be classified into two categories: 

discovery of diseases that often co-occur in patients, referred to as disease comorbidity 

or disease-disease associations, and identify disease-gene associations, which are 

genetically the most relevant [1, 2]. Understanding relationships between diseases, 

such as comorbidities or disease-disease associations, gained the attention of many 

researchers during the past years. Especially the predictive, preventive, personalized 

and participatory medicine (4P-medicine) may benefit from these knowledge 

discovery methods [1, 2]. Traditional statistical and network analysis methods have 

been augmented by data mining and machine learning techniques to obtain more 

complex and interesting knowledge. These insights help to understand the correlations 

between diseases or disease-groups, provide retrospective information on a patient 

trajectory, support prospective therapy decisions, and give epistemological 

information on conditions which are relevant in certain population groups. However, 

disease comorbidity patterns research is often limited by small datasets or the focus on 

specific diseases and patient populations. Further, the sequential order of diseases is 
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often neglected during the analysis. This may be crucial to discover new disease 

associations and offer novel insights to explain disease pathogenesis.  

1.2 CONTEXT 

This work is using the unique opportunity to access high-quality, dense dataset 

of electronic patient records containing diagnostic and medication codes of the entire 

Taiwanese population. The collection is obtained from Taiwan’s National Health 

Insurance Research Database. Nevertheless, data is an asset only if processed by the 

right algorithms and visualized in a meaningful and interpretable way. The value 

comes from the possibility to extract useful information or knowledge. Data mining 

uses some specialized computational methods to discover meaningful and valuable 

structures in the data. The objective is to find potentially useful conclusions and 

support informed decisions. Compared to the usual statistical computations data 

mining defines a process with a set of tasks which help to discover novel patterns or 

generalizations. Pattern mining is a specialized field in data mining which focuses on 

determining non-trivial relationships between items and itemsets. Pattern mining 

algorithms improved significantly in the past two decades and showed promising 

possibilities for different applications. This provides the opportunity to utilize the 

state-of-the-art algorithms in an interactive knowledge discovery framework in the 

medical domain. This work focuses on sequential pattern mining to discover and 

model sequential relationships between diseases. Given the large collection of 

electronic health records the data mining algorithms are used to find interesting 

insights to disease associations which are common in a specific gender- or age-groups.  

1.3 OBJECTIVE 

The primary objective of this project shall be to explore the use of sequence 

mining techniques for analysis of a large set of electronic health records. This works 

focus is to develop and implement a framework which may help to find, model and 

explore sequential disease patterns. This may help to gain knowledge about disease 

associations, patient trajectories, and long-term treatment processes. 

The objectives of this project are: 

• To address the domain-specific challenges, deal with the numerous extensions 

for sequential pattern mining algorithms, and generate reproducible results this 
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work shall include a structured requirements analysis, outline the data 

processing pipeline and explain the framework design.  

• The framework shall be developed as a Web application following a 

minimalistic design principle around the content and main functionality. 

• The application shall support to run many of the current state-of-the-art 

sequence pattern mining algorithms to find frequent sequences of disease 

within the large dataset. 

• The collection, filtering, and visualization of the found disease patterns and a 

model to interactively explore the disease associations shall be the main 

contributions to research on disease associations. 

• The application design, sequential pattern mining algorithms, and the results 

visualizations shall be reviewed critically according to the requirements 

definitions. 

1.4 OUTLINE 

This thesis has the following structure. Chapter 2 will introduce the preliminary 

notions, basic concepts and related research, to give the reader a better understanding 

of the technical and medical background of this work. After a detailed requirements 

analysis in Chapter 3, the actual concept is explained in Chapter 4, followed by the 

realization, outlined in Chapter 5. In Chapter 6 the implemented framework and the 

results obtained from the mining processes are presented. Chapter 7 presents an 

example of a possible analysis with this framework. Further, the limitations and 

opportunities of the application will be discussed. Conclusion and future work will be 

outlined in Chapter 8.   
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2.  BASIC CONCEPTS AND RELATED WORK 

Data mining refers to the automated analysis of large datasets to discover 

valuable information, patterns, and rules. It has been a topic of great interest in the last 

decades, and therefore a large amount of research was conducted in this discipline. 

Data mining techniques are designed to discover hidden, unexpected and useful 

information which can be used to predict future outcome. Some of the most 

fundamental tasks are clustering, classification, and pattern mining [3]. Especially with 

the improvement and advancement of different algorithms, mining large datasets has 

become feasible yet challenging. In many domains, it is essential to consider the 

sequential relationship in the data to discover more important patterns. 

A good example of this is health care information systems which collect large 

collections of electronic patient health records each time a patient visits a medical 

institution. This data may contain a broad range of hidden clinical information like 

disease associations or co-occurrences. The task of sequential pattern mining was 

proposed as a solution for analyzing this kind of sequential data [4, 5]. This chapter 

surveys previous work in sequential pattern mining as a fundamental task in data 

mining and disease associations analysis. 

2.1 PRELIMINARIES 

This section presents a formal definition of the sequence mining problem with 

some illustrative examples. The notation and terminology follow the standards in the 

related literature as introduced in the original mining task definitions of Agrawal and 

Srikant [5, 6], as well as the notations of Fournier-Viger et al. in the recent survey 

papers of itemset mining [7] and sequential pattern mining [4].  

Let 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑛} be a set of n distinct items and 𝑋 be a non-empty sub-set 

of items such that 𝑋 ⊆ 𝐼. Without loss of generality assume that there exists a total 

order on items ≺ such as the lexicographical order (𝑒. 𝑔. 𝑎 ≺ 𝑏 ≺ 𝑐 ). The number of 

items within an itemset is called length. An itemset with the length 𝑘 = |𝑋| items is 

called k-itemset.  
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A transaction or event 𝑇𝑡 is an itemset with an additional time component 𝑡, 

which registers the time when the transaction was executed. A transaction database 

TDB is a set of tuples (𝑇𝐼𝐷, 𝑇𝑡), where 𝑇𝑡 is a transaction having a transaction-id 𝑇𝐼𝐷. 

Transactions may have the same itemset and time component, but must have a unique 

TID. Table I shows an example of a transaction database containing three different 

transactions. These transactions could, for example, represent different reported 

diagnoses at a particular time period. Note that some items, like 𝑏 and 𝑓, seem to 

cooccur together in different itemsets. 

Table I. A transaction database. 

TID Transaction 

1 {𝑎, 𝑏, 𝑓} 

2 {𝑏, 𝑓} 

3 {𝑎, 𝑏, 𝑒, 𝑓} 

A sequence 𝛼 =  〈𝑇𝑡1
, 𝑇𝑡2

, … , 𝑇𝑡𝑙
〉 is an non-empty ordered list of transactions, 

where the transaction time 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑙. The number of items within a sequence 

is called the length of the sequence. A sequence of length 𝑙 = ∑ |𝑇𝑖|𝑖  is referred to as 

l-sequence. An item can occur at most once in an itemset, but can occur multiple times 

in various transactions within a sequence.  

A sequence database SDB is a set of tuples ( 𝑆𝐼𝐷, 𝛼), where 𝛼 is a sequence 

associated with a sequence-id 𝑆𝐼𝐷. Sequences may contain the same transactions, but 

must have a unique SID. Table II illustrates a sequence database with four different 

sequences. Note that the sequence with 𝑆𝐼𝐷 = 2 is composed from transactions shown 

in the transaction database in Table I. Each sequence could, for example, represent all 

reported diagnoses belonging to one patient.  

Table II. A sequence database. 

SID Sequence 

1 〈{𝑎, 𝑏, 𝑐}, {𝑏, 𝑒}, {𝑔}, {𝑎, 𝑏, 𝑐, 𝑒}〉 

2 〈{𝑎, 𝑏, 𝑓}, {𝑏, 𝑓}, {𝑎, 𝑏, 𝑒, 𝑓}〉 

3 〈{𝑎, 𝑏}, {𝑏}, {𝑐}, {𝑓, 𝑔}, {𝑓}, {𝑒}〉 

4 〈{𝑏}, {𝑐}, {𝑓, 𝑔}〉 

All sequences 𝛼 =  〈𝐴1, 𝐴2, … , 𝐴𝑛〉 are called sub-sequences of another 

sequence 𝛽 =  〈𝐵1, 𝐵2, … , 𝐵𝑚〉 and 𝛽 is called super-sequence of all 𝛼, if there exist 
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integers 1 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛 ≤ 𝑚 such that 𝑛 ≤ 𝑚 and 𝐴1 ⊆ 𝐵𝑡1
, 𝐴2 ⊆

𝐵𝑡2
, … , 𝐴𝑛 ⊆ 𝐵𝑡𝑛

. The sequence 𝛼 is said to be included or contained in 𝛽. For 

example, the sequence 〈{𝑏}, {𝑐}, {𝑓, 𝑔}〉 is included in the sequence 

〈{𝑎, 𝑏}, {𝑏}, {𝑐}, {𝑓, 𝑔}, {𝑓}, {𝑒}〉. 

The number of tuples in SDB is called the base size of SDB, denoted as |𝑆𝐷𝐵|. 

The absolute support or frequency of the sequence 𝛼, denoted 𝜎𝛼 = 𝜎(𝛼, 𝑆𝐷𝐵), is 

defined as the number of super-sequences of 𝛼 in the database SDB. The relative 

support is defined as the percentage of tuples in SDB that contain 𝛼 (i.e.,
 𝜎(𝛼,𝑆𝐷𝐵)

|𝑆𝐷𝐵|
). For 

example, the SDB presented in Table II has a base size |𝑆𝐷𝐵| = 4 and the sequence 

𝛾 = 〈{𝑎, 𝑏}〉 has the absolute support 𝜎𝛾 = 3, because it appears in three different 

sequences (𝑆𝐼𝐷 = 1, 2 & 3). 

Given a user-specific positive integer 𝜎𝑚𝑖𝑛 as a threshold, termed minimum 

support, a sequence 𝛾 is a sequential pattern in the given SDB and is said to be frequent 

if 𝜎𝛾 ≥ 𝜎𝑚𝑖𝑛. The general sequential pattern mining problem is to find the complete 

set of sequential patterns in the given SDB and satisfying the 𝜎𝑚𝑖𝑛 threshold. 

2.1.1 Frequent Sets 

Given the 𝜎𝑚𝑖𝑛 threshold there is always a single correct answer to the general 

sequential mining problem. However, discovering all sequential patterns in the naive 

approach by calculating the support of all possible sub-sequences and output only 

those meeting the 𝜎𝑚𝑖𝑛 threshold is an enumeration problem and is unrealistic to solve 

for most real-life sequence databases. Especially long patterns or periodic patterns may 

result in a not manageable search space [8, 9]. A sequence containing 𝑛 items can have 

up to 2𝑛 − 1 distinct subsequences. Because of this large search space, the time 

complexity and potential output size of the results it is necessary to design efficient 

algorithms to avoid exploring all possible subsequences. Therefore, some search 

related definitions are presented, before introducing the specific algorithms. [7] 

Closed frequent 

Closed patterns are patterns which are not included in other frequent sequential 

patterns than itself having the same support. Discovering only closed sequential 

patterns instead of all frequent sequential patterns may reduce the result set 

significantly. However, closed sequential patterns can be used to recover all sequential 
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patterns and their support without accessing the original database. This property is 

referred to as lossless representation of all sequential patterns. [7] 

 

Figure 1. The relationship between frequent itemsets 

Maximal frequent 

 A maximal pattern is any pattern which is not a sub-sequence of any other 

frequent pattern in the database [7]. As illustrated in Figure 1 closed and maximal 

frequent itemsets are subsets of all the frequent itemsets, but maximal frequent 

itemsets usually have a more compact representation. Although the number of 

maximal patterns can be much less than closed patterns, all frequent itemsets can be 

obtained without any additional scan of the original database. However, unlike the 

closed patterns, an additional scan is needed to recover the support values. For 

example, given the itemsets from the transaction database in Table I and a minimum 

support 𝜎𝑚𝑖𝑛 = 2, there would be seven frequent itemsets, two closed itemsets and 

only one maximum itemset. The results are displayed in Table III. 

Table III. Frequent, Closed and Maximal Patterns from Table I. 

Frequent Itemsets Closed Itemsets Maximal Itemsets 

{𝑎} → (𝜎 = 2) 

{𝑏} → (𝜎 = 3) 

{𝑓} → (𝜎 = 3) 

{𝑎, 𝑏} → (𝜎 = 2) 

{𝑎, 𝑓} → (𝜎 = 2) 

{𝑏, 𝑓} → (𝜎 = 3) 

{𝑎, 𝑏, 𝑓} → (𝜎 = 2) 

{𝑏, 𝑓} → (𝜎 = 3) 

{𝑎, 𝑏, 𝑓} → (𝜎 = 2) 

{𝑎, 𝑏, 𝑓} → (𝜎 = 2) 

Generator patterns 

Generator sequential patterns are the set of patterns which have no sub-

sequences having the same support. The set of generator patterns is a subset of all 

frequent patterns. Generator patterns are used to describe or characterize a group of 

sequences in the sequence database. They can also be combined with information from 

closed or maximal frequent pattern sets to provide higher accuracy in classification or 

to generate rules for further analysis. [7] 

Frequent Patterns

Closed Frequent Patterns

Maximal Frequent Patterns
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2.2 DATA MINING BACKGROUND 

Most of the current sequential pattern mining (SPM) [5] algorithms have 

emerged from the traditional frequent itemset mining (FIM) or association rule mining 

(ARM) [6] and have been improved and extended by key features over time. This 

section presents the main characteristics and how this field of research developed since 

the early 1990s when Agrawal and Srikant proposed the Apriori algorithm. [7] 

2.2.1 Frequent Sequence Patterns 

Most real-world problems and data have a time dependency or a sequential order 

of events. Agrawal and Srikant address this problem by extending the original Apriori 

algorithm for mining subsequences in a set of sequences [5]. By using discretization 

techniques, it can also be applied to any time-series data. Traditional domains for this 

mining task are for example stock market predictions, sensor data readings, text and 

language analysis, customer behavior prediction and bioinformatics [4]. Before 

reviewing the differences between the various utilization strategies and variations of 

the algorithms it is important to give an overview related to all sequential pattern 

mining. 

The assumed general total order ≺ represents the order of processing items in 

the database. It is used to follow a specific order to explore potential frequent patterns. 

Note that any order ≺ has no influence on the final result produced by the algorithm, 

but reconsidering the same patterns more than once is avoided.  

There are two basic operations called s-extension (sequence-extended pattern) 

and i-extension (item-extended pattern), which are performed by all sequential pattern 

mining algorithms. Both operations are used to extend a k-sequence to a (k+1)-

sequence. These operations are formally defined as followed. Let 𝛼 =  〈𝐴1, 𝐴2, … , 𝐴𝑛〉 

and 𝛽 =  〈𝐵1, 𝐵2, … , 𝐵𝑚〉 be two sequences. 𝛼 is called a prefix of sequence 𝛽 if 𝐴1 =

𝐵1, 𝐴2 = 𝐵2, … , 𝐴𝑛−1 = 𝐵𝑛−1 and 𝐴𝑛 is equal to the first |𝐴𝑛| items of 𝐵𝑛 according 

to the total order ≺. A sequence 𝛾 is said to be an s-extension of 𝛼 with an item x, if 

𝛾 =  〈𝐴1, 𝐴2, … , 𝐴𝑛, {𝑥}〉, i.e., 𝛼 is a prefix of 𝛾 and the item x appears in an itemset 

occurring after all itemsets of 𝛼. A sequence 𝛾 is said to be an i-extension of 𝛽 with an 

item x, if 𝛾 =  〈𝐵1, 𝐵2, … , 𝐵𝑚 ∪ {𝑥}〉 and the item x is the last item occurring in 𝑆𝛾 

according to the total order ≺. For example, the sequence 𝛼 =  〈{𝑎, 𝑑}, {𝑏}, {𝑐}〉 would 
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be a s-extension and 𝛽 =  〈{𝑎, 𝑑}, {𝑏, 𝑐}〉 would be an i-extension of the sequence 𝛾 =

 〈{𝑎, 𝑑}, {𝑏}〉 as the prefix and the item c as an extension. 

  

Figure 2. Breadth-first (left) vs. depth-first search (right). 

The mining algorithms can be categorized in being either depth-first search or 

breadth-first search algorithms [4]. An example visualization of both search methods 

is given in Figure 2. The breadth-first search, also called level-vise approach, will scan 

the database for frequent 1-sequences, then generate all 2-sequences by performing s-

extensions and i-extensions, then all 3-sequences using the 2-sequences and so on until 

no sequences can be generated. The enumeration problem for long sequences can have 

a huge search space, and the search might fail due to memory and runtime errors. 

Therefore most of the recent algorithms tend to explore the search space in the depth-

first order. Depth-first algorithms also start with sequences containing single items, 

but then recursively perform i-extensions and s-extensions with only one of the 

sequences to generate larger sequences in each recursive step. If no more extension 

can be performed the algorithm backtrack, to generate other sequences with the same 

prefix but another item as an extension. 

To reduce the computation cost of the mining task, designing an efficient 

algorithm requires to integrate techniques, referred to as pruning, to avoid exploring 

the whole search space. One of the most common pruning techniques is based on the 

so-called apriori property, also known as downward-closure property or the anti-

monotonicity property. This property states that any non-empty subset of a frequent 

itemset must also be frequent. It can be also be applied to sequential patterns indicating 

that if the sequence 𝛼 is included in the sequence 𝛽, then 𝜎𝛼 ≥ 𝜎𝛽. The application of 

this property can greatly reduce the search space since any pattern candidate which is 

infrequent cannot generate frequent extensions. [6] 
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2.2.2  Traditional Itemset Mining Task 

One of the most common tasks in data mining is to find frequent itemsets or 

groups of items frequently appearing together in a database. Since this knowledge has 

numerous real-life applications and domains like market basket analysis, 

bioinformatics, text mining, product recommendation, e-learning, and Web analysis, 

this field of data mining became a popular and active research topic. Two major 

approaches have been introduced to address this problem. 

Apriori-Based 

The algorithm proposed by Agrawal and Srikant was the first of its kind in the 

field of FIM. It was initially intended for analyzing customer data but is now viewed 

as a general data mining task. [6] 

The pseudocode of the Apriori algorithm is given in Figure 3. It starts with an 

initial scan of a transaction database to calculate the support for each distinct item (line 

1). This information is used to identify a set of all frequent items, denoted as 𝐹1, 

meeting the given minimal support threshold (line 2). Then a breadth-first search is 

performed to find extended itemsets (lines 4-10). During the search, the Apriori first 

generates all potential itemsets of length 𝑘, denoted as 𝐶𝑘, by combining the already 

observed frequent itemset 𝐹𝑘−1 (line 5). All candidate items which contain some (𝑘 −

1)-itemset that is not in 𝐹𝑘−1 violate the downward-closure property. They are 

therefore removed from 𝐶𝑘 (line 6). The support values for all remaining itemsets is 

calculated by scanning the database (line 7). The search is repeated for all candidates 

𝐹𝑘 meeting the 𝜎𝑚𝑖𝑛 threshold until no new candidates can be generated. 

Many other algorithms have been inspired by the Apriori algorithm and use the 

key feature of pruning by the downward-closure property. However, there are some 

significant limitations to the original algorithm. First, the Apriori generates candidates 

without looking at the original database, which can result in creating candidates which 

are not observed at all. Second, the algorithm needs to scan the database each time the 

candidates are evaluated. Another important limitation is the breadth-first search, 

which in the worst case requires to keep all patterns in memory at any time. [7] 
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Figure 3. The Apriori algorithm. [6, 7] 

FP-Growth 

Algorithms like Eclat [10] improved upon the Apriori by using a depth-first 

search. However, many of the bottleneck features, especially the candidate generation, 

of Apriori remained unsolved until the frequent pattern growth (FP-Growth) algorithm 

was introduced by Han, Pei, and Yin in 2000 [11]. 

To avoid generating candidates which do not appear in the database the FP-

Growth algorithm is using an extended prefix-tree structure, called frequent-pattern 

tree (FP-Tree). The mining task is transformed from mining the database into mining 

this compact tree. The tree structure provides a compact view of the data with an 

additional header table for every distinct item that satisfies the support threshold. 

Additionally, the concept of a projected database is introduced to reduce the explored 

search space effectively. The following section outlines these concepts of FP-Growth 

algorithms. [7, 12] 

The core method uses a recursive divide-and-conquer strategy to retain 

associations between items without candidate generation. The pseudocode of the FP-

Growth algorithm is given in Figure 4. The initial input is the transaction database 

TDB, a minimal support threshold 𝜎𝑚𝑖𝑛 and an empty itemset X . It starts with an initial 

scan of the TDB to find the set I of frequent items given the 𝜎𝑚𝑖𝑛 threshold (line 2). 

For each found item i, the itemset 𝑋 ∪ {𝑖} has to be a frequent itemset and therefore is 

added to the output (line 4). Since not all items of the TDB can be appended to generate 

an extended frequent itemset, a projected database (concept outlined in the example 

Input:  TDB : Transaction database, 𝛔𝐦𝐢𝐧: Minimum support threshold. 

Output:  Set of frequent itemsets. 

 

1. Scan the database TDB to calculate the support for all items in I ; 

2. 𝐹1 = {𝑖|𝑖 ∈ 𝐼 ∧ 𝜎𝑖 ≥ 𝜎𝑚𝑖𝑛};    // F1 : frequent 1-itemsets 

3. 𝑘 = 2; 

4. While 𝐹𝑘 ≠ ∅ do 

5.  𝐶𝑘 = 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝐹𝑘−1);   // Ck : candidate k-itemsets 

6.   Remove each candidate 𝑋 ∈ 𝐶𝑘 that contains (𝑘 − 1)-itemset that is not in 𝐹𝑘−1; 

7.   Scan the database TDB to calculate the support of each candidate 𝑋 ∈ 𝐶𝑘; 

8.   𝐹𝑘 = {𝑋|𝑋 ∈ 𝐶𝑘 ∧ 𝜎𝑋 ≥ 𝜎𝑚𝑖𝑛};   // Fk : frequent k-itemsets 

9.   𝑘 = 𝑘 + 1; 

10. End 

11. Return ⋃ 𝐹𝑛𝒏=𝟏…𝒌  
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below) on the itemset 𝑋 ∪ {𝑖} is created to find only frequent itemsets which appear in 

the TDB (line 5). This projection is then used to perform a recursive depth-first search 

on the itemset 𝑋 ∪ {𝑖} with respect to the minimum support threshold 𝜎𝑚𝑖𝑛 (line 6). 

After the recursive search, all items in X are frequent itemsets. Note that the database 

scan is reduced to a minimum cost, since the information needed for extending the 

itemsets is obtained from the very compact projected database. Further, the generated 

candidate itemsets can only be sets which are truly observed in the database, thus 

avoids considering many itemsets which do not appear at all. [7] 

 

Figure 4. The FP-Growth algorithm. [7, 11] 

To illustrate these steps the example TDB from Table I is used once more with 

the minimum support threshold 𝜎𝑚𝑖𝑛 = 2. After an initial scan of the database, the 

frequent 1-itemsets are {𝑎} with 𝜎 = 2, {𝑏} with 𝜎 = 3 and {𝑓} also with 𝜎 = 3. The 

algorithm will create a projected database for each of these itemsets to perform the 

mining task. The projected database 𝑇𝐷𝐵′ of any item i is defined by an transaction 

set where i appears, but all preceding items according to the general total order ≺ and 

the item i itself have been removed. To find the frequent extensions the algorithm will 

scan the projected database for each itemset and estimate the support values. The 

algorithm will follow the depth-first search recursively for each frequent set found in 

the projection until all frequent sets have been explored. An example for the search in 

the projected databases of {𝑎} is shown in Table IV and Table V. 

Table IV. Projected database of {𝑎}. 

TID Transaction 𝝈  

1 {𝑏, 𝑓} 2 

3 {𝑏, 𝑒, 𝑓} 1 
 

Table V. Projected database of {𝑎, 𝑏}. 

TID Transaction 𝝈  

1 {𝑓} 2 

3 {𝑒, 𝑓} 1 
 

Input:  TDB : Transaction database, 𝛔𝐦𝐢𝐧: Minimum support threshold, X : the current itemset (initially 𝑋 = ∅). 

Output:  Set of frequent itemsets. 

 

1. Function 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐺𝑟𝑜𝑤𝑡ℎ(𝑇𝐷𝐵, σmin, 𝑋) 

2.  Scan the database TDB to find the set I of all frequent items in TDB; 

3.  Foreach item 𝑖 ∈ 𝐼 do 

4.   Output 𝑋 ∪ {𝑖};   // X ∪ {i} is a frequent itemset 

5.   𝑇𝐷𝐵′ = 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝐷𝐵, 𝑖);  // Create a projected database of X ∪ {i} 

6.   𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐺𝑟𝑜𝑤𝑡ℎ(𝑇𝐷𝐵′, σmin, 𝑋 ∪ {𝑖}); // Recursive call to extend X ∪ {i} 

7.  End 
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Pattern-growth algorithms offer many improvements over the original Apriori 

design. However, there are also limitations and optimizations which have been 

addressed in related research. Especially the cost to create a projected database was 

evaluated and optimized by a pseudo-projection, which consists of pointers on the 

original database. Note that many other improvements, e.g., Map-Reduce paradigm, 

can be integrated into a pattern-growth algorithm. [7] 

2.2.3 Efficiency Improvements by Novel Designs 

Itemset mining and related topics have been an active research topic for almost 

thirty years and still offer countless opportunities for research. Especially a lot of effort 

was made to enhance the performance by novel data structures and algorithm designs. 

This is one of the most important problems since the mining task can be very time-

consuming. Much of the past research has focused on reducing the search space (e.g., 

early pruning techniques), operations on the data (e.g., IDLists) or a smart way of 

representing the itemsets to save memory (e.g., bitvector representation). Some of the 

algorithms introduced in the last decade propose designs which allow running parallel 

mining task on distributed systems, GPU’s or multicore to increase speed and 

scalability. Furthermore, there have been plenty of extensions and variations from the 

original field of FIM, for example, high-utility itemset mining, rare-pattern mining or 

association rule mining. [4, 13–15] 

2.2.4 Extensions 

Before introducing specific algorithms some necessary extensions and 

techniques are described, which may be included in the mining task. Many of these 

extensions are used as some constraint to limit the search space and improve mining 

efficiency [8, 16]. This section will only outline extensions which are used in the 

application developed as part of this work. 

Length Constraint 

One of the easiest ways to limit the search space is by specifying the minimum 

and maximum length of the candidate patterns. This constraint may be useful to find 

more meaningful sequences without getting lost in the depth of the search tree. [16] 
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Item Constraint and Regular Expression Mining 

Specifying items which have to or should not be present in the candidate itemsets 

is a powerful way to limit the results to a user-specific focus. This constraint can be 

extended to perform mining based on regular expressions over the set of items. [17] 

Time, Time-Window or Duration Constraint 

This constraint is defined only in sequential pattern mining or time series mining 

since it requires some time-stamp in the database. The candidate patterns are pruned 

such that the time difference between the first and last transactions must not be longer 

or shorter than a given period. [8, 18] 

Gap Constraint 

This constraint is also defined only for sequential pattern mining tasks. It 

requires that the time difference between any transactions in the candidate pattern is 

not longer or shorter than the given gap interval. This constraint type is prevalent in 

text and language analysis since words in a sentence often have direct relationships to 

their immediate neighbors. [16] 

Weighted Pattern Mining 

This approach extends the traditional frequent pattern mining problem by giving 

each item a weight instead of treating each item uniformly. Therefore each item in the 

database has different importance for the outcome. For example, profits of retail items 

used in market basket analysis or the term frequency-inverse document frequency are 

common weights to find more interesting frequent itemsets. [19] 

Multi-dimensional Mining 

Real world application datasets may have associations from multidimensional 

space. For example, customer purchase behavior often depends on local or regional 

events, time, date, customer group, and others. Finding patterns associated with multi-

dimensional information is a solvable problem. But, compared to the traditional FIM 

task, the proposed methods suffer in terms of performance and efficiency. [20, 21] 

High-Utility Mining 

Similarly to the weighted pattern mining the problem of high-utility itemset 

mining, also referred to as simple utility mining, extends the traditional FIM problem 

by item weight. Additionally, utility mining also takes into account the number of 

items in each transaction. Especially for customer basket analysis, this kind of mining 
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became very popular in the last decade, since discovering frequent high-utility itemsets 

offers a smart way to analyze the cooccurrences of items and maximize the profit of 

each transaction. [22, 23] 

Uncertain Pattern Mining 

Various real-life applications have probabilistic datasets of uncertain data. 

Uncertain frequent pattern mining extends the traditional FIM to address this kind of 

problem. Some of the recent research in this field suggests combining the traditional 

mining task results with some kinds of density-based clustering methods to deal with 

uncertain data and outliers. [24] 

2.3 EXTENSIONS FOR BIG DATA MINING 

Different kind of efficient pattern mining algorithms have been implemented, 

yet not all of them are scalable enough to deal with the “Big Data” datasets collected 

nowadays. There is an obvious need to develop tools which can complete the mining 

task concerning the time and memory complexity of the problem [25]. This section 

outlines the main concepts used by some of the algorithms included in the framework. 

2.3.1 Parallelism 

Some of the serial tasks, e.g., the computation of support of generated 

candidates, can be parallelized. However, this naive approach relies on assumptions 

like an unlimited process memory and concurrent data operations. Memory scalability, 

task partitioning, and load balancing are the most critical problems to solve while 

designing a parallel algorithm. [25, 26] 

Memory scalability is the problem of fitting the data in memory. Note that, even 

if the input data is small enough to be loaded into memory, the process itself might 

fail, e.g., the candidate generation or the data structures used by the algorithm may be 

too large. [25] 

To design efficient parallel algorithms the process has to be divided into smaller 

units of work, called tasks, where each task is independent and can be executed 

concurrently. To archive an efficient design the computational work by each task has 

to be distributed equally while minimizing the inter-processor communication cost 

between the tasks. The mining tasks tend to be highly irregular depending on the input 

dataset and the algorithm parameters chosen by the user. Therefore, the computational 



 

 16 

work assigned to a task can lead to imbalanced processing. Dynamic load balance 

methods attempt to actively assign work to a process and minimize the idle time. [25] 

2.3.2 Distributed Systems 

While parallelization attempts to execute processes concurrently on the same 

machine, a distributed system consists of multiple machines working together but 

appear as a single computer to the end user. The machines share information and state 

through messages, operate concurrently and do not depend on each other. Two 

common paradigms, Message Passing and Map-Reduce, are used to develop memory 

distributed systems. Especially the more recent Map-Reduce paradigm is specifically 

designed for working on Big Data sets and was used in some of the recent mining 

algorithms. [27, 28] 

2.4  SEQUENTIAL PATTERN MINING ALGORITHMS 

As far as the literature review indicates, the SPMF data mining library [29] is 

the largest collection of open-source implementations of sequential mining algorithms. 

It provides more than 120 different pattern mining algorithms implemented in Java 

and can be integrated into other applications or run as standalone software [14]. Most 

of the algorithms used in this work are available through the SPMF library. 

Many of the algorithms developed in the field of sequential pattern mining are 

based on previous work and improved upon limitations of other algorithms. Since there 

is a large number of different extensions and parameters which are addressed in 

specific mining tasks this section will only discuss the main deviations and differences 

from other implementations. An overview of all sequential pattern mining algorithms 

used for the implementation in this project is shown in Table VI and is surveyed in the 

following section.  

Agrawal and Srikant formally defined the sequential pattern mining problem in 

transactional databases in 1995 as an extension of their original Apriori algorithm. 

Progress in barcode technology has made it possible to collect and store massive 

amounts of market basket data, which was the primary purpose of this analysis. They 

introduced the basic concept of association rules, which refer to intra-transaction 

patterns, and sequential patterns, which relate to inter-transaction patterns. The 

original Apriori algorithm was already capable of discovering association rules within 
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itemsets. To find patterns in a sequence of itemsets they introduced and evaluated three 

new algorithms – AprioriAll, AprioriSome, and DynamicSome. [5] 

Table VI. Sequence mining algorithms overview. 

Year Algorithm Constraint Features 

1995 AprioriAll [5]  First algorithm for sequential pattern mining. Adoption of original Apriori algorithm. 

2002 SPAM [30]  Depth-first sequence mining on vertical bitmap representation of data. 

2003 CloSpan [31] Closed FP-Growth algorithm for discovering closed sequential patterns. 

2003 TSP [32] Closed Mining top-k frequent sequential patterns. 

2004 BIDE [33] Closed Mining closed sequential patterns without candidate maintenance. 

2013 ClaSP [34] Closed Mining closed patterns on a vertical data representation with additional pruning. 

2013 MaxSP [35] Maximal Mining maximal sequential patterns. 

2013 MG-FSM [36]  Sequence mining algorithm with the gap-threshold build on Map-Reduce paradigm.  

2013 TKS [37]  Mining top-k frequent sequential patterns on a vertical data representation. 

2014 CM-ClaSP [38] Closed Co-occurrence pruning as modification to original ClaSP. 

2014 CM-SPAM [38]  Co-occurrence pruning as modification to original SPAM 

2014 VMSP [39] Maximal Mining maximal sequential patterns on a vertical data representation. 

2015 CloFAST [40] Closed Closed sequence mining algorithm based on sparse id-lists pruning. 

2016 LASH [41]  Sequence mining with hierarchies built on MapReduce paradigm. 

2016 Skopus [42]  Mining exact top-k sequential patterns under leverage. 

The SPAM algorithm proposed by Ayres et al. in 2002 was one of the first 

algorithms which utilized a depth-first search strategy for mining sequential patterns. 

Additionally, the algorithm uses a vertical bitmap representation of the data for 

effective counting of the support values and candidate generation. [30] 

CloSpan is a pattern-growth algorithm for discovering closed sequential patterns 

in sequence databases, proposed by Yan et al. in 2003. The main concept used by the 

algorithm is the equivalence of projected databases. This concept was shown to be 

effective as a method to effectively prune the search space. [31] 

Sequential pattern mining often generates an exponential number of patterns if 

the database consists only of long frequent sequences. Also, the outcome of the mining 

task heavily depends on the 𝜎𝑚𝑖𝑛 value – small values may lead to many patterns which 

are not relevant, whereas big values may not show any outcome at all. Tzvetkov et al. 

try to address these limitations by the algorithm called TSP. It takes two additional 

parameters, minimum pattern length (min-l) and the desired number (top-k) of 

sequential patterns with the highest overall support, to reduce the results to a relevant 

but manageable size. [32] 
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The sequential pattern mining algorithm BIDE was proposed by Wang et al. in 

2004. BIDE introduces a concept for mining closed sequences without candidate 

maintenance and was shown to outperform previous work in terms of memory 

consumption significantly. [33] 

In 2013 Gomariz et al. proposed the sequential pattern mining algorithm called 

ClaSP. It combines the vertical database layout with several efficient search space 

pruning methods to mine closed patterns. [34] 

Fournier-Viger et al. proposed MaxSP in 2013 – a maximal sequential pattern 

mining algorithm without candidate maintenance. Mining frequent patterns degrade 

the performance of the mining task in terms of execution time and memory 

requirement and become worse with longer sequences. Mining only the maximal 

patterns may help to reduce the number of patterns to the more meaningful ones. 

However, previous algorithms needed to maintain a large number of intermediate 

candidates in main memory for this mining task. MaxSP neither produced redundant 

candidates nor stores intermediate candidates in main memory and was therefore 

shown to be efficient. [35] 

MG-FSM was proposed by Miliaraki et al. in 2013 as a highly scalable frequent 

sequence mining algorithm build on the Map-Reduce paradigm. Since the primary 

purpose of this algorithm is n-gram mining in large-scale text datasets, it is the first 

distributed FSM algorithm that supports a general gap constraint. [36] 

Similar to the TSP the TKS algorithm proposed by Fournier-Viger in 2013 aims 

to discover only the top-k sequential patterns, where k is the number of sequential 

patterns to be found and is set by the user. TKS uses a vertical database representation, 

a basic candidate generation procedure as SPAM and several effective strategies to 

prune the search space. TKS outperforms TSP in terms of execution time and memory 

usage, especially on dense datasets. [37] 

Algorithms which use a vertical database format (e.g., ClaSP or SPAM) provide 

advantages in candidate generation and support count without rescanning the database. 

However, an important performance bottleneck remained since they use a generate-

candidate-and-test approach. In 2014 Fournier-Viger et al. propose a new effective 

candidate pruning mechanism for vertical sequential pattern mining algorithms. It is 

based on item co-occurrence information, which is stored in a new data structure 
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named Co-occurrence MAP. The resulting algorithms are named with “CM-“ as a 

prefix, e.g., CM-ClaSP, CM-SPAM. [38] 

The VMSP algorithm proposed by Fournier-Viger et al. in 2014 is the first 

algorithm for mining maximal sequential patterns on vertical data representation. To 

prune the search space and identify the maximal patterns efficiently the algorithm uses 

three different strategies – EFN (Efficient Filtering of Non-maximal patterns), FME 

(Forward-Maximal Extension checking) and CPC (Candidate Pruning by Co-

occurrence map). [39] 

Fumarola et al. propose an algorithm, named CloFAST, for mining closed 

sequential patterns in 2015, which uses a novel representation of the dataset based on 

sparse id-lists and vertical id-lists. These data structure properties allow both to check 

the closure property and prune the search space in a single step. CloFAST is 

empirically proven to outperform the state-of-the-art algorithms, especially when 

mining long closed sequence patterns. [40] 

In 2016 Beedkar and Gemulla introduce a new algorithm named LASH, for 

mining sequential patterns in the presence of hierarchies. Additionally to the sequence 

dataset LASH allows to input information about the hierarchy of items, e.g., “Barack 

Obama” may generalize to “politician” to “person”. This generalization can be used to 

find sequential patterns and relations on multiple levels, which otherwise would be 

hidden. LASH is closely related to the MG-FSM algorithm. It is also built primarily 

for text mining on the Map-Reduce paradigm and supports the gap constraint. [41] 

Petitjean et al. introduce leverage as a new measure of interest and propose a 

new sequence mining algorithm, named Skopus, to discover the top-k patterns under 

this measure. Most frequent patterns in real-world datasets are not interesting since 

they simply correspond to the permutation of the most frequent items. For example, 

given a large text as the dataset, the results of a sequence mining task would show that 

the most frequent patterns are permutations of stop-words like “and”, “to” and “of”. 

This illustrates that the support is not a good measure for interestingness of the 

patterns. The leverage measure shows if the pattern is more frequent than can be 

explained by an independence assumption of the sub-patterns it is composed of. It is 

shown that leverage may be used to discover more relevant patterns, consistent with 

the definition of expected support. [42] 
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2.5 DATA MINING IN HEALTHCARE 

All public and private health institutes are producing and collecting enormous 

amounts of data. There is an obvious need to provide automated tools for discovery 

and analysis of useful information in an interpretable way. Several studies propose 

novel methods which support administrative and medical decision estimation, e.g., 

decisions regarding treatments, disease prediction, health policies. Most of the 

common data mining techniques such as classification, clustering, and regressions are 

crucial for making decisions regarding patients’ health. Especially in combination with 

the fast-growing trend of machine learning diagnostic methods and treatments are 

improving rapidly. [43, 44] 

2.5.1 ICD-9-CM Codes 

Some of the challenges are important to point out when working with healthcare 

datasets. One of the most significant is to acquire the precise and complete set of data. 

Due to its nature, the medical data is complex, heterogeneous and collected from 

different sources while quality, accuracy and privacy concerns have to be maintained 

during the whole process. In recent years standardized datasets became available and 

publicly accessible. [44] 

The International Statistical Classification of Diseases and Related Health 

Problems, commonly referred to as ICD, was established by the World Health 

Organization (WHO) to track morbidity and mortality rates across the world. It 

provides a unique, up to five characters long, alpha-numeric code to classify diseases 

and a wide variety of signs, symptoms, abnormal findings, diseases and others. The 

most recent version ICD-11 (11th Revision) was released in June 2018. [45] 

The ICD-9-CM (9th Revision, Clinical Modification) is the U.S. health system's 

adaptation which was created primarily for billing purposes. In clinical practice, ICD-

9-CM codes have been widely used as a record of patient diagnoses, symptoms, and 

conditions. [46] 

The ICD-9-CM version consists of 22,401 distinct codes arranged hierarchically 

in 19 chapters, also referred to as groups, e.g., “Infectious And Parasitic Diseases” or 

“Diseases Of The Digestive System”. The first digit of the code is alpha-numeric, 

followed by a minimum of two and a maximum of four digits. The first three characters 

define the category of the disease, disorder, infection or symptom. For example, V83 



 

 21 

encodes “Genetic carrier status”, 250 encodes “Diabetes mellitus”, 250.1 encodes 

“Diabetes with ketoacidosis”, and 250.13 encodes “Diabetes with ketoacidosis, type 

I [juvenile type], uncontrolled”.  

Table VII. Statistics for the full dataset. 
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2.6 DATASET 

The dataset was obtained from Taiwan’s National Health Insurance Research 

Database (NHIRD). A mapping tool was used to convert the claimed records to a 

transaction dataset with ICD-9-CM disease codes. It contains more than 758 outpatient 
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visits and 2179 distinct disease categories, that were observed in the entire Taiwanese 

population of over 21 million individuals. The subjects were followed for 36 months 

from January 1st, 2000 through December 31st, 2002. Each was attributed to a specific 

gender- and age-group, e.g., male and female, aged 0 to 9, 10 to 19, … , and 90 to 99 

years. Detailed statistics of the dataset are shown in Table VII. 

2.7 WEB APPLICATION TECHNOLOGIES 

This section introduces the concepts of Web technologies used for this work. 

Nowadays, there exist various ways to develop a Web application. One of the most 

common to create dynamic Web applications in Java is provided by the Java™ EE 

Specification API’s [47]. An overview of the Servlet & JavaServer Pages (JSP) 

technologies is shown in Figure 5 and outlined in the following section. 

UI

Java Servlets

Java Classes

JSP + JSF

CSS
(+ Bulma)

JavaScript
(+ jQuery)

Update

Use

Render

Data Storage

Read/Write

Browser

Request / Response

 

Figure 5. Overview of the basic Servlet & JavaServer Pages Web application. 

The Apache Tomcat server is used as a Web servlet container on which the 

application is deployed. When a Web application is loaded, the ServletContainer 

creates the ServletContext once and keeps it in the memory. A client can access the 

application through a Web browser. The server listens to these requests on a defined 

HTTP port. The ServletContainer then creates new HttpServletRequest and 

HttpServletResponse objects and passes them down to the Servlets. The Servlets 

represent the controller component, which is used to invoke actions by the client, 

access the underlying model and pass information to the view. Standard Java classes 
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are used to implement the underlying logic, make data operations and represents the 

state of the application. A Servlet performs actions based on the HttpServletRequest 

and passes requested models to the JavaServer Pages of the Web application. JSP is a 

Java-based technology, which allows writing templates in client sided languages, e.g., 

HTML, CSS or JavaScript. Additionally, JSP supports tag-libraries, e.g., JavaServer 

Pages Standard Tag Library (JSTL), and Expression Language (EL). This makes it a 

powerful technology to dynamically control the routing, output and enables resolution 

of Java objects and methods. To implement a modern, responsible and modular 

interface the open source CSS framework Bulma is used [48]. The open source 

JavaScript library jQuery is used for some client sided HTML manipulations, event 

handling, CSS animation and Ajax [49]. 
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3.  REQUIREMENTS ANALYSIS 

This chapter discusses the requirements for the development of the Disease 

Pattern Miner – a domain-specific interactive knowledge discovery framework. 

Identifying the project’s objectives and requirements is an important step in the process 

of developing a new (Web-based) application is. It is essential to include and adapt the 

requirements to both experts domain knowledge and knowledge derived during the 

mining and modeling process.  

3.1 REQUIREMENTS 

This section briefly lists the main functional and non-functional requirements 

derived from the supported scenarios as well as the additional requirements and 

specifications determined during the literature review and implementation. The 

requirements are explained in detail in Sections 3.2 and 3.3. 

3.1.1 Functional Requirements 

[R1] The user wants to upload a transaction dataset meeting a specified predefined format. 

[R2] The application should filter the dataset. 

[R3] The application should split the dataset into smaller gender-age-group transaction 

files. 

[R4] The user wants to select the transaction files which will be used in the mining task. 

[R5] The user wants to create a mining algorithm task. 

[R6] The user wants to specify or change the mining task parameters. 

[R7] The user wants to run the mining processes. 

[R8] The application should convert the transaction files to sequence files. 

[R9] The user wants to view the collected results in a single table. 

[R10] The user wants to filter the results table. 

[R11] The user wants to export the results table to a downloadable file. 

[R12] The application should find all patients having a specific frequent pattern. 

[R13] The user wants to view the most frequent codes for a specific table cell. 
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[R14] The user wants to view the visualization of patient trajectories for a specific frequent 

pattern. 

[R15] The user wants to filter the trajectory model. 

[R16] The user wants to export the visualized model to a downloadable file. 

3.1.2 Non-Functional Requirements 

[R17] The framework shall be a server sided Web application.  

[R18] The system shall load all files on restart automatically. 

[R19] The application should work on different browsers.  

[R20] The results table may show which algorithm produced the entry. 

[R21] The algorithms shall have a default set of parameters. 

[R22] The algorithms run may not block any actions by the user. 

[R23] The application gives feedback about the status of the mining processes. 

[R24] The user interface is split in different views which can be accessed by a standard 

menu. 

[R25] All algorithms have to be available open-source. 

[R26] All algorithms solve a sequential mining task. 

[R27] No multi-language support. 

3.1.3 Elicitation of Additional Requirements and Specifications 

[R28] Hard drive space is not restricted. 

[R29] The system may process large data files or at least reduce the data to a manageable 

size. 

[R30] The Heap and RAM shall be limited not to exceed the server capabilities. 

[R31] All algorithms have to be implemented in Java. 

[R32] Algorithms may take into account hierarchical constraints. 

[R33] No algorithms for …  

a. Itemset Mining, since time order is supposed to be taken into account. 

b. Association Rule Mining, since the output is supposed to be a sequence. 

c. High-Utility Mining, since no utilities are given. 
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3.2 MINING PIPELINE 

The initial goals of this work were to apply data mining methodology to find 

gender- or age-group-specific patterns of disease-disease associations, which are the 

most relevant. Building a data processing pipeline is crucial to developing a data 

mining application. This allows to break down and define the process, identify the 

activities and describe the specific problems involved in this work. The pipeline 

developed as part of the initial requirements gathering is presented in Figure 6 and is 

explained in detail in the following section. The derived requirements are referenced 

within the text by number and summarized in Section 3.1. 

Start Web 
Application on 

Server

Load Data-Files

Run Algorithms in 
sepperate 
Threads

User selects Algorithm Type and 
specifies Parameter

Collect all Results 
in single Table

User selects Data-Files 

Export Result-
Table

Give Feedback about current 
Status

User selects Filter for Results-
Table

User creates Algorithm

Upload Data-Files by the User

 

Figure 6. The data mining pipeline. 
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The first step in the pipeline is to set up the dependencies necessary to compile 

and deploy the project on a server sided Web application [R17]. After starting the Web 

server, the user should be able to access the application through any browser 

[R19][R24]. This is necessary due to two reasons. First, the user profile, who might be 

using the application, is limited to experts in the field of disease associations analysis 

and data mining. This user group requires to be able to share their data sources as well 

as the results. Second, the mining algorithms may require a lot of computational 

resources and run several hours or even days, depending on the dataset and the 

parametrization of the task.  

The next step should require the user to upload a transaction dataset meeting 

some predefined format [R1]. This dataset should be filtered and transformed to meet 

the models defined in the backend of the application [R2]. The user should then be 

given the option to select all data which will be used in the mining process [R3][R4]. 

In the next step of the pipeline, the user shall create some mining algorithms, 

which each may run in a separate thread [R5][R22][R25][R26]. Each of these mining 

tasks shall have a default setup, but may be parametrized by the user if needed 

[R6][R21]. The application shall run the mining algorithms on the selected data and 

give feedback about the current status, success, and failure [R7][R8][R23]. 

If the algorithm finishes successfully it shall produce a result file with 

information about the frequent patterns in the dataset [R20]. All results shall be 

collected in a single table [R9]. Each row in this table shall be the frequent pattern, the 

columns shall be gender-age-groups and the cells shall display the support values. The 

table rows shall be sorted according to the highest support values in each row. The 

user shall be able to filter this results table to find more meaningful and interesting 

patterns [R10]. Further, the user should be given the option to export the table to a 

downloadable file [R11]. 

3.3 EXPLOIT OF FREQUENT DISEASE PATTERNS  

The table of the frequent patterns found in the sequence dataset may provide a 

summarized visualization of the mining tasks. Differences regarding gender- or age-

groups could be observed just by this table. However, the pattern itself may not be 

useful without the knowledge about the codes it was composed of. To extract and 

exploit information about a specific frequent pattern the application shall find the 
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complete set of patients having that pattern as a sub-sequence [R12]. This set shall be 

used to detect the most frequent diseases in that group [R13]. Further, this set shall be 

used to build an interactive model of the visualized patient disease trajectories [R14]. 

The user shall be able to select different gender- or age-groups and filter the model for 

diseases and disease-groups [R15]. The model shall display support values for the 

transitions between different conditions and visualize them in a meaningful way [R14]. 

The user should be given the option to export the model to a downloadable file [R16]. 
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4. DESIGN 

The design chapter is built upon the requirements to define the overall system 

architecture, models and user interfaces that are used for implementation. The 

development was an incremental process. Experience gained during the 

implementation and expert knowledge influenced the design. 

4.1 ARCHITECTURAL DESIGN 

The architectural concept is the first step to build the intended framework to 

fulfill the defined requirements. Since the Disease Pattern Miner is not integrated into 

an existing system, a monolithic design was chosen to implement the application as a 

single contained unit having several modules. The modules of the framework, as 

illustrated in Figure 7, are explained in more detail in the following section. Note that, 

essential classes, interfaces, and data-structs of some modules are explained later in 

Section 5.3. 

data data

resources views

algorithms

manager (@WebListener) servlets (@WebServlet)

 

Figure 7. Framework module design. 

The Disease Pattern Miner consists of two main modules – libraries and app. 

The libraries module includes existing implementation of mining algorithms as 
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independent child modules, e.g., SPMF1, LASH2, MG-FSM3. It is thus ensured that the 

framework can be extended by other algorithms or libraries. Since the SPMF library 

is developed in Java and appears to be the largest open-source collection of pattern 

mining algorithms, all included mining algorithms have to be Java implementations 

[R31]. 

The main module app includes three child modules – models, webapp and servlets. 

These modules are implemented as part of this work to meet the defined requirements 

from Section 3.1. The Model-View-Controller architecture is used to achieve a 

separation of concern, which is also implied by the Servlet and JSP Web technology. 

The module models includes three packages – data, algorithms, and results. They form 

backend models and represent the state of the application. The view is implemented 

by the module webapp, which has the package's resources, containing static resources 

(e.g., CSS, JavaScript, Images), and views, comprising dynamically generated web 

pages. Communication between model and view is realized through the servlets 

module. The servlets are divided between either being managers (implementing 

WebListeners) or servlets (implementing WebServlets). The managers are started up 

when the application is loaded into the context while the servlets are invoked by an 

user action. 

4.2 USER INTERFACE DESIGN 

Based on the Disease Pattern Miner requirements and the defined mining 

pipeline several low-fidelity mock-ups were designed with prototyping tool Webflow 

[50]. The website user interface follows a minimalistic design principle around the 

content and main functionality. This ensures that the user can identify the goals and 

navigate the application step by step. The following section introduces mock-ups to 

show different visual aspects of this work. The mock-ups are later used to design the 

Web application.  

Figure 8 shows the mock-up of the main template, which is used across the entire 

application. The proposed sketch is built with a standard website design having a 

header and navbar at the top, a content section as the main body and a footer. This 

                                                 

 
1 http://www.philippe-fournier-viger.com/spmf/ 
2 https://github.com/uma-pi1/lash 
3 https://github.com/uma-pi1/mgfsm 

http://www.philippe-fournier-viger.com/spmf/
https://github.com/uma-pi1/lash
https://github.com/uma-pi1/mgfsm
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simple template design can be used across the entire application by simply replacing 

the content section with the route specific content. The header and the footer are used 

to enclose the application and show the site identity as well as useful links. Sitemaps 

can be quickly accessed through the navbar at all time. The first item in the navbar is 

a dashboard page, which is also the index page of the application. The dashboard page 

provides some necessary information and main links to the project repository, 

documentation as well as the related publications. 

 

Figure 8. Mock-up of the main template used for all sites. 

 

Figure 9. Mockup for the data view.  
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The second navbar item is the data page. The mock-up of the data page is shown 

in Figure 9. This page has two columns, which show the available data sorted by the 

gender-age-group files. The user can select which of the files should be used during 

the mining process. Further, the user is given the option to upload additional datasets.  

 

Figure 10. Mock-up of the algorithm view.  

The next navbar item is the algorithms page. The corresponding mock-up is 

shown in Figure 10. This page displays a table of different algorithms. The user can 

add new algorithms, change the type and the parameters. The algorithms can be run, 

paused and canceled. The table also displays information about status and time when 

the algorithm was executed and when it finished.  

The next item in the navigation bar is the results page. The mock-up of the results 

is presented in Figure 11. The results consist of two sections – filter options to reduce 

the number of patterns displayed to the most relevant and the results table. The user 

can add, parametrize or remove the filter. The content of the results table adjusts 

automatically to these filters. The results table has frequent patterns as rows and the 

gender-age-groups as columns. The patterns have some color visualization. The cell 

entries are the support values of the pattern found by an algorithm in the corresponding 

gender-age-group dataset. Further, the table is a heatmap, and the individual cells are 

be highlighted according to their relative support values. By adding a color scheme, 

the user may quickly identify distributions, importance, and similarities of patterns. 



 

 33 

Hovering a cell provides additional information about the associated dataset and 

pattern. 

 

Figure 11. Mock-up of the results view. 

 

Figure 12. Mock-up of the explorer view.  

The next navbar item is the explorer page. The mock-up design of this page is 

shown in Figure 12. The results view is created to compare the found frequent patterns, 

whereas the explorer view is designed to give insights to a specific pattern selected by 

the user. A cell or pattern in the results view is linked to the corresponding explorer 



 

 34 

view. The explorer view has some basic options to adjust the model, e.g., options to 

change gender or age. The main content section displays some interactive model build 

from the set of patients having a specific pattern. The model visualizes patient disease 

trajectories and displays the frequencies of disease sequences. The user can select 

specific trajectories to highlight their connections and frequencies.  

The last item in the navbar is a logs or statistics page. This view is not a main 

component of the framework, and therefore no particular mock-up is designed. This 

view provides statistical information about the algorithm runtimes and displays them 

as text or graphs. 
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5.  IMPLEMENTATION 

The development of the Disease Pattern Miner followed an agile approach with 

multiple iterations for the application features. The different modules, as well as the 

frontend, were created according to their design purpose. This section gives an 

overview of software tools, the included libraries, and models used during the 

implementation stage. 

5.1 SOFTWARE DEVELOPMENT AND THIRD PARTY LIBRARIES 

The development of large applications requires different tools to manage the 

project, e.g., language version, editor, Web framework. This section introduces the 

software tools and third-party libraries, which were used to develop the disease mining 

framework described in this thesis. 

The application was mainly developed in Java. Therefore the integrated 

development environment (IDE) JetBrains IntelliJ IDEA [51] was used. IntelliJ comes 

with Git [52] and Maven [53] integration out of the box and offers a user-friendly 

interface. Further, IntelliJ can support nearly any language through the use of custom 

language plugins.  

Git is a distributed version control and source code management system. During 

the development, a remote GitLab repository was used. After the implementation was 

finalized, the project was moved to a public GitHub repository4 and published open 

source under the MIT License to allow further research and the continuation of the 

development [54].  

Maven is used as a software project management and comprehension tool. 

Maven allows dependency management including automatic updating and dependency 

closures. The main modules libraries and app, as well as the child modules in 

libraries each, come with their .pom-file. This allows each module to compile, test 

and build independently while having a hierarchical dependency within the 

application. 

                                                 

 
4 https://github.com/vitaliy-ostapchuk93/disease-pattern-miner  

https://github.com/vitaliy-ostapchuk93/disease-pattern-miner
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The framework uses several third-party libraries. Only the most relevant libraries 

for this work are introduced in the following section. Dependencies of the algorithms 

child modules are not included. The complete dependency graph of the project is 

provided in the public repository on GitHub [54]. 

The main dependencies used for the Web application development are the 

Java™ EE Specification API’s [47], including Servlet, JSP, JSTL and more. This 

library mainly is used to implement the communication between client and server (see 

Sections 0 and 4.1).  

Another important dependency is the Apache Commons IO [55] library. It 

contains many utility classes, stream implementations, file filters, file comparators and 

more. This library is used to perform fast read and write operations on the data. 

One of the core dependencies is the Guava [56] library. Guava contains several 

different libraries developed by Google. The most important used during the 

implementation of this framework is the Guava’s Table interface and its multiple 

implementations. These collections are used to implement the results table including 

sorting and various filter options. 

To provide some additional useful features to the Java 8 streams the library 

StreamEx [57] is used. Streams help process large collections of data without keeping 

all in memory at once. 

To design a responsive, modern and modular user interface the CSS framework 

Bulma [48] is used. Bulma is based on Flexbox and offers a large amount of well-

documented elements and design options, e.g., layouts, forms, buttons, modifiers, 

containers, icons. 

The application uses JavaScript on the client side to perform some HTML 

manipulations, event handling or CSS animations. For example, the library Tippy.js 

[58] is used for the tooltips animation and jQuery [49] used for asynchronous requests 

to the server.  

To visualize some of the data the Plotly [59] library is used. Plotly is a free, 

open-source chart visualization library available in both JavaScript and Python.  

Another important dependency to mention is the Data-Driven Documents (D3) 

JavaScript library [60]. D3 is a framework build for visualizing data with Web 
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standards like HTML, SVG, and CSS. This library was used to build an interactive 

model of the disease sequences. To be more specific, a Sankey diagram [61] with the 

extension of hierarchical bi-directional flow [62] was adapted to fit the requirements 

of the model. 

5.2 DATA PROCESSING PIPELINE 

The sequence mining algorithms use file references as input in the mining 

process, and the given dataset is provided as a single CSV-file. Therefore, the 

application is using the file system storage instead of a database for all data 

manipulations. 

The dataset used in this study (see Section 2.6) is provided in the form of a CSV-

file. Each line is a transaction which encodes the gender, age-group, patient identifier, 

date and one to three ICD-9-CM codes. Transactions which do not match the given 

pattern or encode invalid values are removed from the dataset before further 

manipulations. An example snippet is shown in Table VIII and is used in the following 

section to illustrate the filtering and transformations to create the disease groups 

sequence datasets. The resulting filtered and encoded sequence datasets are shown in 

Table VIII. 

Table VIII. Example snippet from the NHIRD dataset. 

TID Gender 

[FEMALE/MALE] 

Age 

[0-9] 

Patient-ID Date 

[YYYYMMDD] 

ICD-9-CM Codes 

1 FEMALE 0 PV63270480 20010108 {410} 

2 MALE 3 KT61521480 20010107 {0740, 4661} 

3 MALE 3 KT61521480 20010107 {V202} 

4 FEMALE 0 PV63270480 20010109 {4659,7806,465} 

5 FEMALE 0 PV63270480 20010127 {460,94400} 

Several transformations and filters are applied before performing a mining 

process on the data. Figure 13 illustrates the different steps in the data processing 

pipeline. First, by splitting the dataset in gender-age-group CSV-files, the mining task 

can be performed in specific groups of interest while also reducing the base size of the 

input file to the base size of the specific group file. For instance, the example dataset 

from Table VIII is separated into two files corresponding to the gender-age-groups 𝐹0 

and 𝑀3. Since all transactions in a group file have the same gender and age-group, 

these rows are dropped. The remaining dataset grouped by the patient identifiers and 
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sorted by the date. Based on expert advice, ICD-9-CM codes of each transaction are 

reduced to their category (first three characters). The reason for this is to reduce the 

code to the most general part and not include too specific diagnoses. Duplicate or 

invalid codes in a transaction are removed. For example, the transaction from Table 

VIII with 𝑇𝐼𝐷 = 4 is reduced to the codes {465,780,465} and the duplicate category 

code 465 is removed, which leaves the transaction code set {465,780}. Based on 

expert advice, ICD-9-CM codes 460 (common cold), 760 to 779 (chapter “Certain 

Conditions Originating In The Perinatal Period”), V01 to V91 (chapter 

“Supplementary Classification Of Factors Influencing Health Status And Contact With 

Health Services”) and E00 to E99 (chapter “Supplementary Classification Of External 

Causes Of Injury And Poisoning”) are removed. This filter operations are performed 

to remove the unreliable, inaccurate or non-relevant parts of the data. Empty 

transactions are removed after the filter operations. The patient ID is used as the SID 

of the corresponding sequence. These transformations result in a disease category 

sequence dataset (see Table IX). 

Complete
Transaction 

Dataset
(.csv-File)

Group 
Transaction 

Datasets
(.csv-File)

0F.csv

0M.csv

9M.csv

Filter and 
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(.txt-File) Mining Tasks

0F_RESULT.txt

Mining Task 
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9M_SEQ.txt 9M_RESULT.txt

Results Table

Results 
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Figure 13. The data processing pipeline.  

Based on expert advice, transactions are merged if their dates are less than two 

weeks apart. This time gap was chosen to join disease codes, which usually belong to 

the same treatment period. Duplicate category codes within the resulting transactions 

are removed. For example, transactions shown in Table VIII with the 𝑇𝐼𝐷 one and 

four, are recorded only one day apart and are therefore merged to {410,465,780}. Each 
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disease category in the sequence is encoded with the corresponding chapter of the ICD-

9-CM codes, e.g., 465 corresponds to “Diseases Of The Respiratory System”. This 

generalization was made intentionally to exploit the hierarchical concept of the ICD 

encoding and reduce the number of distinct items. An enumeration is used to represent 

each chapter. Duplicate enumerations within a transaction are removed. Sequences of 

length less than three or less than two distinct enumerations are removed. For instance, 

the disease category sequence with 𝑆𝐼𝐷 = 𝐾𝑇61521480 in the 𝑀3 dataset (see Table 

VIII) does not have a valid encoded sequence, since the item 𝑉20 was filtered and only 

two valid items remained. Items within a transaction are sorted according to their 

ordinal values of the enumeration, e.g., “Diseases Of The Respiratory System” 

corresponds to the ordinal seven of the disease chapter enumeration. To match the 

SPMF format, the chapters are encoded as the corresponding ordinal values separated 

by single space. The end of each transaction is encoded as " − 1" and the end of the 

sequence is encoded as " − 2", i.e., the sequence with 𝑆𝐼𝐷 = 𝑃𝑉63270480 in the 𝐹0 

dataset from Table IX would be encoded as "6 7 15 − 1 16 − 1 − 2". 

Table IX. Example of the sequence dataset from Table VIII. 

Gender-Age-Group 

[F/M + 0-9] 

SID 

[Patient-ID] 

Disease Category Sequence Encoded Sequence 

[SPMF] 

F0 PV63270480 〈{410}, {465, 780}, {944}〉 6 7 15 − 1 16 − 1 − 2 

M3 KT61521480 〈{074, 466}〉  

Each of the valid SPMF encoded disease sequences of a transaction gender-age-

group CSV-file is written as a line to a corresponding sequence txt-file. This data 

transformation is performed by the system automatically when the application 

deployed on the server or the user uploads new data. In the data view, the user can 

select which sequence files are used as input for the mining algorithms. The output of 

each successful mining task is a txt-file in SPMF format. Each line in the result file is 

a frequent sequential pattern. At the end of each line the keyword "#𝑆𝑈𝑃: " followed 

by an integer indicating the absolute support of the pattern as a number of sequences, 

e.g. "4 2 − 1 5 − 1 − 2 #𝑆𝑈𝑃: 6" would be a frequent sequential patter consisting of 

the itemsets {4, 2} followed by the itemset {5} and having the absolute support 𝜎 = 6.  
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5.3 RELEVANT CLASSES 

This section lists the most relevant classes and their dependencies. Low-level 

details or code examples are not included, but non-trivial implementation issues and 

concepts are explained. 

AbstractAlgorithmTask Implements the concept of a mining task, which is inherited 

by specific mining algorithms, e.g., BidePlusTask, SpamTask. 

AlgorithmManager Starts when the servlet context is initialized. Uses an 

ExecutorService as a thread pool for the AlgorithmRunnables. 

AlgorithmRunnable Implements a Runnable to enclose a mining task as a separate 

managed thread. 

DataManager Starts when the servlet context is initialized. Loads all 

datasets and references into memory to create the state of 

the application. 

DiagnosesGroupHelper Implements most of the ICD-9-CM encoding data 

manipulations in the application, e.g., chapter 

(DiagnosesGroup) or code (ICDCode) filter, get proper 

description or name of the ICDCode, get the color to highlight 

an ICDCode or DiagnosesGroup. 

ICDLink Implements a concept, which is used to build a model of 

patients’ disease sequences. The ICDLink is defined by a 

source node, a target node, and a link value. Given a disease 

category sequence of a patient, the ICDLinks are built of 

ICDCodes appearing in sequential order. The value represents 

the frequency of the two codes in the given sequence. 

ICDSequence Implements the concept of a disease category sequence of a 

patient. This class is used to compare itemsets or patients 

and built an encoded sequence dataset. Further, this class is 

used to analyze the patient disease trajectory to build an 

ICDLink collection. 

InverseSearchThread Implements a Thread, which uses the PatternScanner, to 

perform an inverse search, which retrieves all patients, who 

contain a specific frequent pattern, for all frequent patterns 

in the ResultsTable. 

PatternScanner Implements the concept of an inverse search, which 

retrieves all patients, who contain a specific frequent 

pattern. This subset is used to create ICDLinks and extract 

the most frequent ICDCodes. This operation may be 
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expensive in terms of memory and runtime. Therefore, it is 

performed only once and the data is stored in JSON-files. 

ResultsMapper The ResultsMapper collects the frequent patterns and the 

corresponding support values of all result files in a single 

ResultsTable collection, which is presented to the user in the 

results view. 

5.4 DEPLOYMENT AND MAINTENANCE 

The Disease Pattern Miner is built and deployed on both local and remote 

development environments. Both use the Apache Tomcat [63] servlet container 

(version 9.0.12) to deploy the application as a Web service. The Tomcat server may 

monitor metrics and runtime characteristics of the application. Additionally, a Jenkins 

[64] server (version 2.138.2) is set up on the remote to support continuous integration 

and delivery process for this project. In Jenkins, a pipeline is configured to trigger 

whenever new code is pushed to the remote GitHub repository of the project. Jenkins 

automatically pulls the most recent code from the remote repository, builds the 

application with Maven, according to the pom-files specifications, and may execute 

some tests. If the build is successful Jenkins deploys the application war-file to the 

Tomcat server. This setup helps to reduce cost, time and risk of delivering changes and 

allowing incremental updates to the application in production. 
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6.  RESULTS 

This chapter presents the developed Disease Pattern Miner. This includes the 

user interface of the Web pages as well as the results of the mining tasks and the 

modeling of the frequent disease patterns. 

 

Figure 14. Final implemented the interface of the dashboard view. 

6.1 PATTERN MINING FRAMEWORK 

The Disease Pattern Miner is developed as a monolithic application which is 

deployed on a Tomcat server. The application is developed with modern, responsive 

Web technologies. The user can access the frontend with any browser. As described 

in Section 4.2, the application follows a minimalistic, consistent layout having a 

header, navigation bar, main content section, and a footer. The navigation bar provides 

internal links to six different views. In each view, the user can interact with the 

application to identify and archive specific goals or make observations. For each view 

screenshots of the final implemented interfaces are presented briefly in the following 

section. 

The dashboard, shown in Figure 14, is the index page of the Web application. In 

this view, the user is presented a short description of the framework and three external 
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links to the public GitHub repository, documentation and scientific publications 

related to this project. 

The implementation of the data view is shown in Figure 15. In this view, the user 

can decide which datasets are used in the mining processes. By clicking the gender-

age-group files, they can be selected or unselected. In the top part, the user is given 

two options to add a dataset to the application context. The first option is to upload a 

new dataset as a single CSV-file matching the predefined format. The second option is 

to download a zip-file from an external source, e.g., GoogleDrive. The archive may 

contain already processed datasets, e.g., result files or inverse search files. This option 

may be useful to share datasets which are processed by some other user. 

 

Figure 15. Final implemented the interface of the data view. 

Figure 16 shows the implementation of the algorithms view. The user can chose 

from 15 sequence mining algorithms to create mining tasks, which are displayed as 

rows in a table. The algorithms and constraints (see Section 2.2.4 and 2.4) have default 

parameter values, which may be adjusted for each task. The user can start, pause or 

cancel each mining task. The mining tasks are run as separate threads on the selected 

dataset and produce a result. The table shows the current status of the algorithm, time 

of creation, start and end, as well as the duration. Each task is run as a separate thread 

in a managed thread pool. 
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Figure 16. Final implemented the interface of the algorithms view. 

6.2 SEQUENTIAL DISEASE PATTERNS 

The Disease Pattern Miner automatically filters and converts the uploaded 

dataset to gender-age-group files having encoded disease sequence information (see 

Section 5.2). This sequence files of males and females in the age-groups zero to seven 

are used in multiple mining tasks. The system finishes all tasks successfully and 

produces result files with information about frequent patterns and the corresponding 

support values. Additionally, the application logs statistical information regarding the 

process duration. 

6.2.1 Disease Patterns in Results-View 

The application collects information from all result files in a single table which 

is displayed in the results page of the application (see Figure 17). The table shows the 

found frequent disease patterns as rows and the gender-age-groups as columns. The 

cell entries of the table show the relative support of the pattern in the corresponding 

subset. The patterns and the cells are highlighted with colors. All table entries have 

tooltip information which is displayed on a mouse hover-event. 
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Figure 17. Final implemented the interface of the results view. 

The user can filter the table to reduce the number of displayed patterns to a 

manageable size. The user can select from 11 different filter types, which can be 

adjusted by changing different parameter values. If multiple filtering options are 

selected, the filters are processed in order of the occurrence. The application 

automatically updates the results table. The user can export and download the entries 

of the filtered results table as a JSON-file. 

Next to the sequential disease pattern, two icons are displayed. The search ( ) 

icon indicates whether the inverse search (see Section 5.3) was already performed for 

this pattern in all related gender-age-group datasets. The person ( ) icon indicates 

whether the t-Test is showing a significant difference between males and females when 

comparing the corresponding relative support values.  

Additional information regarding the disease sequence pattern in the proper 

gender-age-groups dataset is displayed as a tooltip of a nonempty table cell. The tooltip 

includes information about common codes (see Section 5.3) of this cell entry. The user 

is also able to click the entry to go to the related disease pattern explorer view. 
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6.2.2 Disease Patterns in Explorer-View 

Given a frequent pattern the Disease Pattern Miner can perform an inverse search 

to find the subset of patients showing the pattern in the corresponding dataset. The 

application uses the disease category sequences of the patients in this subset to count 

the frequencies of categories appearing in sequential order. The information is used to 

build and display a hierarchical, bi-directional, interactive Sankey diagram (see 

Section 5.1). This model is presented to the user in the explorer view. A screenshot of 

the pattern explorer view interface is shown in Figure 18. 

In the top part, the application displays the selected pattern, which is used for the 

current Sankey model. The user can adjust the model by selecting the gender and scroll 

through age-groups. The model can be exported as an image of the Sankey chart or as 

a JSON-file. 

 

Figure 18. Final implemented the interface of the explorer view. 

The Sankey diagram is built of the 250 most frequent disease category links (see 

Section 5.3). The nodes of the graph represent the different ICD-9-CM disease 

categories and chapters. The size of the nodes and links give visual feedback about the 

absolute support values, e.g., large links correspond to high support. The user can 

move the mouse over the links and nodes to get a tooltip about the proper frequencies 

and highlight the flow. The nodes may be dragged with the mouse to adjust their 

position. If the node represents a chapter, it may be expanded to the child disease 

categories. If the node represents a category, it may be collapsed to hide it in the 
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diagram. Both operations may be reversed by clicking the corresponding node 

collapser in the left-top corner of the chart. 

 

Figure 19. Final implemented the interface of the performance view. 

6.3 ALGORITHMS STATISTICS 

To give additional feedback about the duration of the different mining tasks the 

performance interface, shown in Figure 19, was implemented. The Disease Pattern 

Miner uses data collected from log files to display the duration of different mining 

algorithms in simple scatter plots with the Plotly library (see Section 5.1). The duration 

is compared only to the minimal relative support threshold and the size of the dataset. 

Note that it is not the intention of this thesis to evaluate the performance or state which 

algorithm performs best. However, this information might help the user to choose 

algorithms and parameter values for different mining tasks. It is also important to note 
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that it is problematic to compare the algorithms with regard to the many different 

parameters and dataset characteristics. Due to these differences, not all of the 

algorithms’ performance values are displayed in the plots. 
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7. EVALUATION AND DISCUSSION 

In this chapter, a reflection of the presented technical solution is given. Further, 

this chapter presents a stepwise scenario of using the implemented Disease Pattern 

Miner. For each step, an example analysis of the observations is outlined. 

7.1 ANALYSIS OF THE PATTERN MINING FRAMEWORK 

Within the scope of this project, a framework for disease pattern mining was 

designed and implemented. This section will discuss whether the application satisfies 

the defined requirements (see Section 3.1). 

The conceptual framework devised is based on a solid foundation of concepts 

and algorithms for sequential pattern mining. The key motivation for the development 

of this domain-specific application is to run many of the proposed algorithms to 

discover valuable knowledge about frequent disease patterns and disease co-

occurrences in EHR datasets. The Disease Pattern Miner meets all statutory 

requirements and conditions (see Section 3.1). The defined requirements are tested in 

production by multiple users according to the workflow described in the mining 

pipeline (see Section 3.2). The functionality was extended to not only find the frequent 

disease patterns but to build an interactive model, which lets a data scientist explore 

the disease trajectories. This model may provide valuable insights for further research 

on disease-disease associations. The framework was published open-source under the 

MIT License in a public GitHub repository [54].  

The application was developed on Windows and later deployed to and hosted on 

a remote Linux (Ubuntu) environment. The framework appeared the same, except for 

performance differences which can be attributed to the fact of different capabilities of 

the processor, RAM, and hard drive. After the implementation, the framework was in 

production for more than a month to find and fix minor errors. Metrics and runtime 

characteristics have been collected to show adequate functioning. The session 

availability showed an average 98.8% per week with a total downtime of 60.48 

minutes in the measured period. The downtime can be explained by the server 

availability and maintenance of the project. The application reloaded the context 
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successfully in all cases within less than a minute. Except for the inverse search, the 

application does not show significant request or response delays. 

The Disease Pattern Miner is divided into several views, which can be used by 

the user to interact with the application. The views are built following a minimalistic 

design allowing the user to identify the goals in each presented interface fast. 

Nevertheless, to work with the data and different algorithms requires expert domain 

knowledge. New data can be uploaded and included in the mining process but has to 

match the predefined format. The framework does not support other formats or 

connections to a database. The application can filter and convert the data to match 

several different formats. Mining tasks with 15 different sequence mining algorithms 

can be defined. All mining tasks are enclosed in separate threads and can be 

parametrized. Prior knowledge to the selected datasets is required to adjust the 

parameters to get the best possible performance and results. The feedback of the tasks 

is limited to a status report. A result file with frequent patterns is produced if the mining 

task is successful. The results are collected and presented to the user in a single table. 

To provide better visual feedback the frequent disease patterns and the support values 

are highlighted with colors. The user can apply 11 different filter options to find more 

relevant disease patterns. 

For each frequent pattern, the application can find a subset of patients and build 

an interactive model of disease trajectories. The inverse search may be expensive in 

terms of memory and runtime but is only performed once. The model is built with a 

bi-directional, hierarchical Sankey diagram. Both, the results table and the Sankey 

chart, can be exported as JSON-files. The model may be adjusted by the user to show 

specific gender- and age-groups data. The diagram dynamically renders the new 

positions of the model objects according to the disease links in the proper dataset. The 

application does not support to save the state of the model in the application, but the 

chart may be exported as an image. 

The Disease Pattern Miner is developed as a Web application using the Java™ 

EE Specification API’s [47], e.g., Servlets, JSP. These server-side technologies are 

used for Java application development and offer benefits for monolithic applications 

based on the Model-View-Controller architecture. Nevertheless, there exist various 

ways to develop a modern Web application. The modular architecture makes most of 

the productive code reusable for future development. Dividing the application into a 
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frontend and backend service, e.g., frameworks like Vue [65] and Express [66], might 

offer a better separation between the application concepts. Further, to interact with 

other applications the backend endpoints should be defined in a clear API, e.g., REST 

or GraphQL. Container-based microservices (e.g., Docker [67]) may offer 

opportunities to replace the thread-based implementation of the mining tasks.  

7.2 ANALYSIS OF DISEASE PATTERNS  

For demonstration and evaluation purposes a subset of interest was selected from 

the complete dataset. This subset contains only patients who show at least one of the 

following categories within their disease category sequence: migraine (code 346), 

diabetes mellitus (codes 249 and 250), myocardial infarction (codes 410 and 412) or 

chronic kidney disease (code 585). Detailed statistics of this subset of interest are 

shown in Table X in Appendix A. 

The dataset of interest was uploaded through the data interface (see Figure 15) 

of the Disease Pattern Miner. After the upload was successful, the application divided 

the dataset into gender-age-groups files. The data of age-groups eight and nine tends 

to have less distinct patients and codes, while at the same time the maximum and 

average length of the encoded sequences are high. This observation may be explained 

by the fact, that chronic diseases such as heart disease and diabetes are common among 

older adults. The encoded sequences of these groups show periodic patterns [68]. 

Mining periodic patterns is an own field in data mining. The introduced sequence 

mining algorithms do not cover the concept of periodic pattern mining. Therefore these 

groups are not selected for the mining tasks. 

In the algorithms view, all 15 algorithms were set up for mining with different 

parameters. Across all mining tasks: the relative support was set 0.1 or higher, the gap 

constraint (see Section 2.2.4) was set to be two, the minimal sequence length was set 

to be three and the maximum sequence length was set to be 10. All tasks have been 

started independently and finished the mining successfully. 

7.2.1 Analysis of the Result-View 

The Disease Pattern Miner has automatically collected the data from all result 

files. The mining tasks have been able to find 313558 frequent sequential patterns in 

the subset of interest. All frequent patterns were loaded into the results view (see 

Section 6.2.1) automatically.  
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Figure 20. Example of the possible filter operations. 

To demonstrate the filter operations and limit the results to a manageable size 

two filters were created (shown in Figure 20). The Age-filter, for the groups zero to 

three, is selected to display only the groups which have more than 150000 valid 

encoded sequences (see Table X in Appendix A). The TopNGroups-filter is selected 

to filter the frequent patterns for three patterns having the highest support value in each 

age-gender-group. Figure 21 shows the pattern table in the results view after the two 

filter operations are applied. 

 

Figure 21. Example analysis in the Pattern-View. 

In the following section, an example analysis is outlined. The two filter 

operations reduced the number of frequent patterns to 13 with the highest support 

values in each group. The TopNGroups-filter should show three patterns for each of 
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the eight groups (3 patterns in each of 8 groups → 24 patterns). Therefore, it can be 

concluded, that most of these patterns have the highest relative support in multiple age-

gender-groups (24 expected – 13 displayed → 11 patterns have highest support in 

multiple groups). The heatmap on the right side is indicating that most entries show 

high support. It can be observed that older groups tend to be highlighted somewhat 

stronger. A reasonable explanation would be that older people become more 

susceptible to different diseases. As shown in Table X in Appendix A, this observation 

is also supported by the average and maximum length of the encoded sequences in 

these groups, which are higher than in younger age-groups. On the left side, the 

frequent sequential patterns are displayed. It can be observed that all patterns contain 

the encoded chapter 7 (Diseases Of The Respiratory System), and most also contain 

the encoded chapter 2 (Endocrine Nutritional And Metabolic Diseases And Immunity 

Disorders), or 8 (Diseases Of The Digestive System). The reason for this is that these 

chapters have a high prevalence in the subset of interest. The search ( ) icon, next to 

the sequential patterns, indicates that the inverse search (see Section 5.3) was 

completed for all patterns. Further, the person ( ) icon is indicating that the t-Test is 

showing a significant difference between males and females in the three patterns. The 

striped rows of the heatmap for those patterns support this observation.  

 

Figure 22. Example cell hover-tooltip (group 4𝐹 of the pattern number 12). 

For demonstration and evaluation purposes the 12th pattern “7 (Diseases Of The 

Respiratory System) – 1 (TIME GAP) 9 (Diseases Of The Genitourinary System) –1 

(TIME GAP) 15 (Symptoms Signs And Ill-Defined Conditions)” is examined more 

closely. Note that the selected pattern shows a significant difference in gender–groups, 
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whereas the support for this pattern in the female subsets is higher. To get more 

information about the codes which result in this pattern the user may hover the mouse 

over the cells in the heatmap. The tooltip from the hover-event in the group 4𝐹 is 

displayed in Figure 22. In the top part of the tooltip, the user can see which mining 

algorithm found this pattern, information about the absolute support values and the 

result of the t-Test regarding the difference in gender. In the bottom part of the tooltip, 

the most frequent ICD-9-CM category codes are listed. For instance, in this group, the 

pattern could be observed in 102042 different patients and about 24% category codes 

of the chapter 15 are built by code 780. The user can switch to the corresponding model 

in the explorer view, by clicking the cell. 

7.2.2 Analysis of the Explorer-View 

In the explorer view, the user is presented a model of the disease trajectories, 

which are built from the disease category sequences of the subset of patients containing 

the pattern. This section will only outline an example in a female group since the 

pattern was found significantly more often in the female datasets. The primary interest 

might be to analyze the links between the three chapters of the selected pattern 

(Diseases Of The Respiratory System, Diseases Of The Genitourinary System and 

Symptoms Signs And Ill-Defined Conditions). Figure 23 shows the model of the 

selected pattern in the group 4F. All chapter nodes which are not part of the selected 

pattern are expanded, and all nodes which have no links between the chapter nodes of 

the selected pattern are removed. The chapter nodes of the selected pattern may also 

be expanded to see the child disease categories. 

The exact support values of the links and nodes can be inspected in a tooltip. For 

instance, Figure 24 shows the hover-event if the user wants to highlight the links to or 

from the node Diseases Of The Respiratory System on the left or get its total support 

values (Total In: 1193603, Total Out 1535786, Net Flow: 265261).  

Using this model might help to conduct further research on disease associations. 

This might include finding causes and effects of diseases in the graph, predicting 

outcomes for individual patients, regrouping certain diseases or finding evidence for 

disease cooccurrences. Nevertheless, before that, a structured evaluation of the model 

is needed to validate the associations against already well-researched disease 

comorbidities. 
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Figure 23. Sankey diagram of the disease trajectories (pattern number 12, group 4𝐹). 
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Figure 24. Hover-event for the node Diseases Of The Respiratory System. 
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7.3 ALGORITHM RUNTIMES 

Note that evaluating or comparing the mining algorithms it is not part of this 

work, especially since most of them use different constraints and parameters. It could 

be observed that all algorithms have an acceptable execution time if either the relative 

support value is high or the dataset is small. However, the execution time and memory 

of the tasks increases exponentially for both properties. Because of this, the tasks could 

not complete successfully in most cases if the relative support was chosen low and the 

dataset was too large.  

7.4 LIMITATIONS 

This section highlights some of the limitations and weaknesses of the Disease 

Pattern Miner application reported in this thesis. 

First and most important weakness is the limited dataset and the many 

assumptions made during the data processing pipeline. The dataset is almost 20 years 

old and missing relevant information. For example disease utilities, demographic 

information like year of birth or the ethnicity, lab results, histological data or 

information about death are not part of the data. The dataset has to be uploaded by the 

user instead of establishing a connection to a production database. This might result in 

corrupt, invalid or duplicate data. The mining is performed after converting the data 

based on the hierarchy of the ICD-9-CM, which may be considered as a naive 

approach. The mining process requires expert knowledge about the dataset and the 

data mining methodology. The mining algorithms only include open source Java 

implementation. Therefore some important algorithms are missing. In the current 

application, only sequential pattern mining algorithms are implemented. The mining 

does not support item or group specific thresholds or parameters. 

Although the Disease Pattern Miner satisfies all defined requirements, the 

monolithic architectural design is not well suited to separate the concepts of frontend 

and well-defined backend endpoints. Web application technologies are rapidly 

evolving and may offer great opportunities to improve the design and functionality of 

the project reported in this thesis. The framework is missing a clear API definition to 

interact with other applications. Also Unit-Testing most of the current modules is 

required before deploying the application in production mode.  
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Other limitations of the work presented in this thesis are some of the results 

analysis and the model used for the disease trajectories. The property on which the 

patterns are collected and sorted is the support. Alternative measures of interest, e.g., 

leverage, may have better properties when it comes to identifying essential patterns. 

The found patterns have to be reviewed by medical data scientists. The Sankey 

diagram is useful to represent the flow, but the model elements are re-rendered every 

time the user changes the age- or gender-group, making it very difficult to determine 

the effect of individual nodes or links. The model is showing information about the 

sequential order of two nodes, but the disease trajectory as in the disease category 

sequence of a patient is not represented.   
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8. CONCLUSIONS AND FUTURE WORK 

Within the scope of this project, a framework for disease pattern mining was 

designed and implemented to utilize state-of-the-art sequential pattern mining 

algorithms in a domain-specific Web application. An agile development process was 

used to develop the Disease Pattern Miner in several stages. In the first stage, basic 

scenarios and the need for such an application were defined and a requirements 

analysis was performed (see Section 3.1). Based on the requirements, sequential 

pattern mining algorithms and libraries have been reviewed and chosen. Further, based 

on the software requirements specification, a module architecture of a Web application 

(see Section 4.1) and user interface mock-ups (see Section 4.2) have been designed. In 

the next stage, the Disease Pattern Miner was implemented (see Chapter 5) and the 

first results of the mining have been reviewed with domain experts. Changes to the 

requirements were made, and the functionality was extended to provide an interactive 

model of the found patterns. The iterative review, maintenance, and improvements of 

models and the user interface aided the development of the application to a stable 

release version. 

This work has successfully shown that sequential pattern mining algorithms can 

be embedded in a disease associations data analysis framework. The application may 

support medical data scientists and researchers to discover valuable knowledge about 

disease co-occurrences. These insights may help to understand the correlations 

between diseases or disease-groups, provide retrospective information on a patient 

trajectory, support prospective therapy decisions, and give epistemological 

information on diseases which are relevant in a specific gender- or age-groups. 

The presented interactive model of patient disease trajectories, which is built 

from a subset of patients having some frequent pattern, offers a novel approach to find, 

explore and understand the disease associations. Together with the frequent disease 

patterns, discovered by various sequence mining algorithms, this application enables 

a variety of use cases. Nevertheless, a structured evaluation of the data and models is 

needed. 

Future work should separate the application concepts in a frontend and a backend 

with well-defined endpoints ensuring better interoperability and accessibility. Further, 
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the application should be extended with other mining methods and libraries, e.g., high-

utility mining or traditional itemset mining algorithms. Another important 

improvement would be to extend the data models to include more complex information 

and filtering options. The application should also be extended to support direct 

connections to databases instead of using the file system storage. 

 In conclusion, it could be shown that the data mining methods can help to 

discover and understand disease associations in large electronic health record datasets. 

Utilizing different pattern mining algorithms has the potential to change future 

research on disease comorbidities and improve clinical treatment. 
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APPENDICES 

Appendix A 

Table X. Statistics for the dataset of interest. 
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