

Heidelberg University Heilbronn University of

Applied Science

Taipei Medical University

IMPLEMENTATION OF AN INTERACTIVE

PATTERN MINING FRAMEWORK ON

ELECTRONIC HEALTH RECORD DATASETS

Master Thesis

Submitted to the Department of Medical Informatics in partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

Written and presented by

Vitaliy Ostapchuk

Submitted: Monday, May 6, 2019

Referees: Prof. Dr. Daniel Pfeifer

Heilbronn University of Applied Science

 Prof. Dr. Shabbir Syed Abdul

Taipei Medical University

Affidavit iii

AFFIDAVIT

I hereby confirm that my thesis entitled “Implementation of an Interactive

Pattern Mining Framework on Electronic Health Record Datasets“ is the result of my

own work. I did not receive any help or support from commercial consultants. All

sources and/or materials applied are listed and specified in the thesis.

Furthermore, I confirm that this thesis has not yet been submitted as part of

another examination process neither in identical nor in similar form.

Signature: ____________________

Date: Monday, May 6, 2019

Matriculation numbers:

197744 – Heilbronn University of Applied Science

3195255 – Heidelberg University

Acknowledgments iv

ACKNOWLEDGMENTS

I would like to extend thanks to the many people, in many countries, who so

generously supported me with the work presented in this thesis.

Profound gratitude goes to my supervisor, Prof. Daniel Pfeifer of Heilbronn

University. My thesis has been an amazing experience and I am sincerely thankful, not

only for his academic support, but also for the encouragement and giving me the

opportunity to go abroad to Taiwan.

Similar, special mentions goes to my supervisor in Taiwan, Prof. Syed Abdul

Shabbir of Taipei Medical University. I am particularly indebted for his constant faith

in my work, his guidance and for his support when so generously hosting me in

Taiwan. I have very fond memories of my time there.

I am very grateful to the members of the Graduate Institute of Biomedical

Informatics for welcoming me in the team and for their support. I would like to

especially acknowledge Prof. Yu-Chuan Li (Jack), for the hospitality, advice and for

sharing his expertise.

I am also hugely appreciative to Dr. Antonio Millana Martínez of Universitat

Politècnica de València, for his advice and expertise in the early stages of this thesis.

My deep appreciation goes out to Friederike Sottek (B.Sc.) and Maximilian

Kurscheidt (B.Sc.) for their advice and feedback on my work.

Finally, but by no means least, thanks go to all my new and old friends and family

for almost unbelievable support. They are the most important people in my world and

I dedicate this thesis to them.

Abstract v

ABSTRACT

Large collections of electronic patient records contain a broad range of clinical

information highly relevant for data analysis. However, they are maintained primarily

for patient administration, and automated methods are required to extract valuable

knowledge for predictive, preventive, personalized and participatory medicine.

Sequential pattern mining is a fundamental task in data mining which can be used to

find statistically relevant, non-trivial temporal dependencies of events such as disease

comorbidities. This works objective is to use this mining technique to identify disease

associations based on ICD-9-CM codes data of the entire Taiwanese population

obtained from Taiwan’s National Health Insurance Research Database.

This thesis reports the development and implementation of the Disease Pattern

Miner – a pattern mining framework in a medical domain. The framework was

designed as a Web application which can be used to run several state-of-the-art

sequence mining algorithms on electronic health records, collect and filter the results

to reduce the number of patterns to a meaningful size, and visualize the disease

associations as an interactive model in a specific population group. This may be crucial

to discover new disease associations and offer novel insights to explain disease

pathogenesis. A structured evaluation of the data and models are required before

medical data-scientist may use this application as a tool for further research to get a

better understanding of disease comorbidities.

Table of Contents vi

TABLE OF CONTENTS

Affidavit .. iii

Acknowledgments ... iv

Abstract ...v

Table of Contents .. vi

List of Abbreviations .. viii

1. Introduction ... 1

1.1 Background ...1

1.2 Context ..2

1.3 Objective ...2

1.4 Outline ..3

2. Basic Concepts and Related Work ... 4

2.1 Preliminaries ...4

2.1.1 Frequent Sets ..6

2.2 Data Mining Background ...8

2.2.1 Frequent Sequence Patterns ..8

2.2.2 Traditional Itemset Mining Task ..10

2.2.3 Efficiency Improvements by Novel Designs ..13

2.2.4 Extensions ..13

2.3 Extensions for Big Data Mining ...15

2.3.1 Parallelism ..15

2.3.2 Distributed Systems ..16

2.4 Sequential Pattern Mining Algorithms ...16

2.5 Data Mining in Healthcare ..20

2.5.1 ICD-9-CM Codes ...20

2.6 Dataset ..21

2.7 Web Application Technologies ..22

3. Requirements Analysis .. 24

3.1 Requirements ..24

3.1.1 Functional Requirements ..24

3.1.2 Non-Functional Requirements..25

3.1.3 Elicitation of Additional Requirements and Specifications25

3.2 Mining Pipeline ..26

3.3 Exploit of Frequent Disease Patterns ..27

Table of Contents vii

4. Design ... 29

4.1 Architectural Design ...29

4.2 User Interface Design ...30

5. Implementation .. 35

5.1 Software Development and Third Party Libraries ..35

5.2 Data Processing Pipeline ..37

5.3 Relevant Classes ...40

5.4 Deployment and Maintenance ..41

6. Results ... 42

6.1 Pattern Mining Framework ...42

6.2 Sequential Disease Patterns ..44

6.2.1 Disease Patterns in Results-View ...44

6.2.2 Disease Patterns in Explorer-View ...46

6.3 Algorithms Statistics ...47

7. Evaluation and Discussion .. 49

7.1 Analysis of the Pattern Mining Framework ..49

7.2 Analysis of Disease Patterns ...51

7.2.1 Analysis of the Result-View ...51

7.2.2 Analysis of the Explorer-View ...54

7.3 Algorithm Runtimes ...57

7.4 Limitations ..57

8. Conclusions and Future Work ... 59

Bibliography ...61

Appendices ..65

List of Abbreviations viii

LIST OF ABBREVIATIONS

4P-medicine predictive, preventive, personalized and participatory medicine

ARM association rule mining

EHR Electronic Health Record

EL Expression Language

FIM frequent itemset mining

FP-Growth frequent pattern growth

FP-Tree frequent-pattern tree

ICD International Statistical Classification of Diseases and Related Health Problems

IDE integrated development environment

i-extension item-extended pattern

JSP JavaServer Pages

JSTL JavaServer Pages Standard Tag Library

NHIRD Taiwan’s National Health Insurance Research Database

SDB sequence database

s-extension sequence-extended pattern

SPM sequential pattern mining

TDB transaction database

WHO World Health Organization

 1

1. INTRODUCTION

Rapidly evolving information and computer technology have transformed

healthcare organizations by improving health services and knowledge management

infrastructure. Large amounts of data, driven by record keeping, compliance, and

regulatory requirements, and patient care is collected and accessible electronically.

Data mining provides useful techniques to automatically extract valuable, non-trivial

knowledge or find interesting patterns in the available datasets. Sequential pattern

mining is a fundamental task in data mining to analyze sequences of events. The

objective of this project is utilizing the methods of sequential pattern mining in a

domain-specific interactive knowledge discovery framework.

1.1 BACKGROUND

Epidemiology is the study of the distribution and determinants of health-related

states or events, health problems, and their comorbidities. Many data-driven analyses

on Electronic Health Record (EHR) have shown benefits for clinical practice. In

particular, this data-driven analysis can broadly be classified into two categories:

discovery of diseases that often co-occur in patients, referred to as disease comorbidity

or disease-disease associations, and identify disease-gene associations, which are

genetically the most relevant [1, 2]. Understanding relationships between diseases,

such as comorbidities or disease-disease associations, gained the attention of many

researchers during the past years. Especially the predictive, preventive, personalized

and participatory medicine (4P-medicine) may benefit from these knowledge

discovery methods [1, 2]. Traditional statistical and network analysis methods have

been augmented by data mining and machine learning techniques to obtain more

complex and interesting knowledge. These insights help to understand the correlations

between diseases or disease-groups, provide retrospective information on a patient

trajectory, support prospective therapy decisions, and give epistemological

information on conditions which are relevant in certain population groups. However,

disease comorbidity patterns research is often limited by small datasets or the focus on

specific diseases and patient populations. Further, the sequential order of diseases is

 2

often neglected during the analysis. This may be crucial to discover new disease

associations and offer novel insights to explain disease pathogenesis.

1.2 CONTEXT

This work is using the unique opportunity to access high-quality, dense dataset

of electronic patient records containing diagnostic and medication codes of the entire

Taiwanese population. The collection is obtained from Taiwan’s National Health

Insurance Research Database. Nevertheless, data is an asset only if processed by the

right algorithms and visualized in a meaningful and interpretable way. The value

comes from the possibility to extract useful information or knowledge. Data mining

uses some specialized computational methods to discover meaningful and valuable

structures in the data. The objective is to find potentially useful conclusions and

support informed decisions. Compared to the usual statistical computations data

mining defines a process with a set of tasks which help to discover novel patterns or

generalizations. Pattern mining is a specialized field in data mining which focuses on

determining non-trivial relationships between items and itemsets. Pattern mining

algorithms improved significantly in the past two decades and showed promising

possibilities for different applications. This provides the opportunity to utilize the

state-of-the-art algorithms in an interactive knowledge discovery framework in the

medical domain. This work focuses on sequential pattern mining to discover and

model sequential relationships between diseases. Given the large collection of

electronic health records the data mining algorithms are used to find interesting

insights to disease associations which are common in a specific gender- or age-groups.

1.3 OBJECTIVE

The primary objective of this project shall be to explore the use of sequence

mining techniques for analysis of a large set of electronic health records. This works

focus is to develop and implement a framework which may help to find, model and

explore sequential disease patterns. This may help to gain knowledge about disease

associations, patient trajectories, and long-term treatment processes.

The objectives of this project are:

• To address the domain-specific challenges, deal with the numerous extensions

for sequential pattern mining algorithms, and generate reproducible results this

 3

work shall include a structured requirements analysis, outline the data

processing pipeline and explain the framework design.

• The framework shall be developed as a Web application following a

minimalistic design principle around the content and main functionality.

• The application shall support to run many of the current state-of-the-art

sequence pattern mining algorithms to find frequent sequences of disease

within the large dataset.

• The collection, filtering, and visualization of the found disease patterns and a

model to interactively explore the disease associations shall be the main

contributions to research on disease associations.

• The application design, sequential pattern mining algorithms, and the results

visualizations shall be reviewed critically according to the requirements

definitions.

1.4 OUTLINE

This thesis has the following structure. Chapter 2 will introduce the preliminary

notions, basic concepts and related research, to give the reader a better understanding

of the technical and medical background of this work. After a detailed requirements

analysis in Chapter 3, the actual concept is explained in Chapter 4, followed by the

realization, outlined in Chapter 5. In Chapter 6 the implemented framework and the

results obtained from the mining processes are presented. Chapter 7 presents an

example of a possible analysis with this framework. Further, the limitations and

opportunities of the application will be discussed. Conclusion and future work will be

outlined in Chapter 8.

 4

2. BASIC CONCEPTS AND RELATED WORK

Data mining refers to the automated analysis of large datasets to discover

valuable information, patterns, and rules. It has been a topic of great interest in the last

decades, and therefore a large amount of research was conducted in this discipline.

Data mining techniques are designed to discover hidden, unexpected and useful

information which can be used to predict future outcome. Some of the most

fundamental tasks are clustering, classification, and pattern mining [3]. Especially with

the improvement and advancement of different algorithms, mining large datasets has

become feasible yet challenging. In many domains, it is essential to consider the

sequential relationship in the data to discover more important patterns.

A good example of this is health care information systems which collect large

collections of electronic patient health records each time a patient visits a medical

institution. This data may contain a broad range of hidden clinical information like

disease associations or co-occurrences. The task of sequential pattern mining was

proposed as a solution for analyzing this kind of sequential data [4, 5]. This chapter

surveys previous work in sequential pattern mining as a fundamental task in data

mining and disease associations analysis.

2.1 PRELIMINARIES

This section presents a formal definition of the sequence mining problem with

some illustrative examples. The notation and terminology follow the standards in the

related literature as introduced in the original mining task definitions of Agrawal and

Srikant [5, 6], as well as the notations of Fournier-Viger et al. in the recent survey

papers of itemset mining [7] and sequential pattern mining [4].

Let 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑛} be a set of n distinct items and 𝑋 be a non-empty sub-set

of items such that 𝑋 ⊆ 𝐼. Without loss of generality assume that there exists a total

order on items ≺ such as the lexicographical order (𝑒. 𝑔. 𝑎 ≺ 𝑏 ≺ 𝑐). The number of

items within an itemset is called length. An itemset with the length 𝑘 = |𝑋| items is

called k-itemset.

 5

A transaction or event 𝑇𝑡 is an itemset with an additional time component 𝑡,

which registers the time when the transaction was executed. A transaction database

TDB is a set of tuples (𝑇𝐼𝐷, 𝑇𝑡), where 𝑇𝑡 is a transaction having a transaction-id 𝑇𝐼𝐷.

Transactions may have the same itemset and time component, but must have a unique

TID. Table I shows an example of a transaction database containing three different

transactions. These transactions could, for example, represent different reported

diagnoses at a particular time period. Note that some items, like 𝑏 and 𝑓, seem to

cooccur together in different itemsets.

Table I. A transaction database.

TID Transaction

1 {𝑎, 𝑏, 𝑓}

2 {𝑏, 𝑓}

3 {𝑎, 𝑏, 𝑒, 𝑓}

A sequence 𝛼 = 〈𝑇𝑡1
, 𝑇𝑡2

, … , 𝑇𝑡𝑙
〉 is an non-empty ordered list of transactions,

where the transaction time 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑙. The number of items within a sequence

is called the length of the sequence. A sequence of length 𝑙 = ∑ |𝑇𝑖|𝑖 is referred to as

l-sequence. An item can occur at most once in an itemset, but can occur multiple times

in various transactions within a sequence.

A sequence database SDB is a set of tuples (𝑆𝐼𝐷, 𝛼), where 𝛼 is a sequence

associated with a sequence-id 𝑆𝐼𝐷. Sequences may contain the same transactions, but

must have a unique SID. Table II illustrates a sequence database with four different

sequences. Note that the sequence with 𝑆𝐼𝐷 = 2 is composed from transactions shown

in the transaction database in Table I. Each sequence could, for example, represent all

reported diagnoses belonging to one patient.

Table II. A sequence database.

SID Sequence

1 〈{𝑎, 𝑏, 𝑐}, {𝑏, 𝑒}, {𝑔}, {𝑎, 𝑏, 𝑐, 𝑒}〉

2 〈{𝑎, 𝑏, 𝑓}, {𝑏, 𝑓}, {𝑎, 𝑏, 𝑒, 𝑓}〉

3 〈{𝑎, 𝑏}, {𝑏}, {𝑐}, {𝑓, 𝑔}, {𝑓}, {𝑒}〉

4 〈{𝑏}, {𝑐}, {𝑓, 𝑔}〉

All sequences 𝛼 = 〈𝐴1, 𝐴2, … , 𝐴𝑛〉 are called sub-sequences of another

sequence 𝛽 = 〈𝐵1, 𝐵2, … , 𝐵𝑚〉 and 𝛽 is called super-sequence of all 𝛼, if there exist

 6

integers 1 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛 ≤ 𝑚 such that 𝑛 ≤ 𝑚 and 𝐴1 ⊆ 𝐵𝑡1
, 𝐴2 ⊆

𝐵𝑡2
, … , 𝐴𝑛 ⊆ 𝐵𝑡𝑛

. The sequence 𝛼 is said to be included or contained in 𝛽. For

example, the sequence 〈{𝑏}, {𝑐}, {𝑓, 𝑔}〉 is included in the sequence

〈{𝑎, 𝑏}, {𝑏}, {𝑐}, {𝑓, 𝑔}, {𝑓}, {𝑒}〉.

The number of tuples in SDB is called the base size of SDB, denoted as |𝑆𝐷𝐵|.

The absolute support or frequency of the sequence 𝛼, denoted 𝜎𝛼 = 𝜎(𝛼, 𝑆𝐷𝐵), is

defined as the number of super-sequences of 𝛼 in the database SDB. The relative

support is defined as the percentage of tuples in SDB that contain 𝛼 (i.e.,
 𝜎(𝛼,𝑆𝐷𝐵)

|𝑆𝐷𝐵|
). For

example, the SDB presented in Table II has a base size |𝑆𝐷𝐵| = 4 and the sequence

𝛾 = 〈{𝑎, 𝑏}〉 has the absolute support 𝜎𝛾 = 3, because it appears in three different

sequences (𝑆𝐼𝐷 = 1, 2 & 3).

Given a user-specific positive integer 𝜎𝑚𝑖𝑛 as a threshold, termed minimum

support, a sequence 𝛾 is a sequential pattern in the given SDB and is said to be frequent

if 𝜎𝛾 ≥ 𝜎𝑚𝑖𝑛. The general sequential pattern mining problem is to find the complete

set of sequential patterns in the given SDB and satisfying the 𝜎𝑚𝑖𝑛 threshold.

2.1.1 Frequent Sets

Given the 𝜎𝑚𝑖𝑛 threshold there is always a single correct answer to the general

sequential mining problem. However, discovering all sequential patterns in the naive

approach by calculating the support of all possible sub-sequences and output only

those meeting the 𝜎𝑚𝑖𝑛 threshold is an enumeration problem and is unrealistic to solve

for most real-life sequence databases. Especially long patterns or periodic patterns may

result in a not manageable search space [8, 9]. A sequence containing 𝑛 items can have

up to 2𝑛 − 1 distinct subsequences. Because of this large search space, the time

complexity and potential output size of the results it is necessary to design efficient

algorithms to avoid exploring all possible subsequences. Therefore, some search

related definitions are presented, before introducing the specific algorithms. [7]

Closed frequent

Closed patterns are patterns which are not included in other frequent sequential

patterns than itself having the same support. Discovering only closed sequential

patterns instead of all frequent sequential patterns may reduce the result set

significantly. However, closed sequential patterns can be used to recover all sequential

 7

patterns and their support without accessing the original database. This property is

referred to as lossless representation of all sequential patterns. [7]

Figure 1. The relationship between frequent itemsets

Maximal frequent

 A maximal pattern is any pattern which is not a sub-sequence of any other

frequent pattern in the database [7]. As illustrated in Figure 1 closed and maximal

frequent itemsets are subsets of all the frequent itemsets, but maximal frequent

itemsets usually have a more compact representation. Although the number of

maximal patterns can be much less than closed patterns, all frequent itemsets can be

obtained without any additional scan of the original database. However, unlike the

closed patterns, an additional scan is needed to recover the support values. For

example, given the itemsets from the transaction database in Table I and a minimum

support 𝜎𝑚𝑖𝑛 = 2, there would be seven frequent itemsets, two closed itemsets and

only one maximum itemset. The results are displayed in Table III.

Table III. Frequent, Closed and Maximal Patterns from Table I.

Frequent Itemsets Closed Itemsets Maximal Itemsets

{𝑎} → (𝜎 = 2)

{𝑏} → (𝜎 = 3)

{𝑓} → (𝜎 = 3)

{𝑎, 𝑏} → (𝜎 = 2)

{𝑎, 𝑓} → (𝜎 = 2)

{𝑏, 𝑓} → (𝜎 = 3)

{𝑎, 𝑏, 𝑓} → (𝜎 = 2)

{𝑏, 𝑓} → (𝜎 = 3)

{𝑎, 𝑏, 𝑓} → (𝜎 = 2)

{𝑎, 𝑏, 𝑓} → (𝜎 = 2)

Generator patterns

Generator sequential patterns are the set of patterns which have no sub-

sequences having the same support. The set of generator patterns is a subset of all

frequent patterns. Generator patterns are used to describe or characterize a group of

sequences in the sequence database. They can also be combined with information from

closed or maximal frequent pattern sets to provide higher accuracy in classification or

to generate rules for further analysis. [7]

Frequent Patterns

Closed Frequent Patterns

Maximal Frequent Patterns

 8

2.2 DATA MINING BACKGROUND

Most of the current sequential pattern mining (SPM) [5] algorithms have

emerged from the traditional frequent itemset mining (FIM) or association rule mining

(ARM) [6] and have been improved and extended by key features over time. This

section presents the main characteristics and how this field of research developed since

the early 1990s when Agrawal and Srikant proposed the Apriori algorithm. [7]

2.2.1 Frequent Sequence Patterns

Most real-world problems and data have a time dependency or a sequential order

of events. Agrawal and Srikant address this problem by extending the original Apriori

algorithm for mining subsequences in a set of sequences [5]. By using discretization

techniques, it can also be applied to any time-series data. Traditional domains for this

mining task are for example stock market predictions, sensor data readings, text and

language analysis, customer behavior prediction and bioinformatics [4]. Before

reviewing the differences between the various utilization strategies and variations of

the algorithms it is important to give an overview related to all sequential pattern

mining.

The assumed general total order ≺ represents the order of processing items in

the database. It is used to follow a specific order to explore potential frequent patterns.

Note that any order ≺ has no influence on the final result produced by the algorithm,

but reconsidering the same patterns more than once is avoided.

There are two basic operations called s-extension (sequence-extended pattern)

and i-extension (item-extended pattern), which are performed by all sequential pattern

mining algorithms. Both operations are used to extend a k-sequence to a (k+1)-

sequence. These operations are formally defined as followed. Let 𝛼 = 〈𝐴1, 𝐴2, … , 𝐴𝑛〉

and 𝛽 = 〈𝐵1, 𝐵2, … , 𝐵𝑚〉 be two sequences. 𝛼 is called a prefix of sequence 𝛽 if 𝐴1 =

𝐵1, 𝐴2 = 𝐵2, … , 𝐴𝑛−1 = 𝐵𝑛−1 and 𝐴𝑛 is equal to the first |𝐴𝑛| items of 𝐵𝑛 according

to the total order ≺. A sequence 𝛾 is said to be an s-extension of 𝛼 with an item x, if

𝛾 = 〈𝐴1, 𝐴2, … , 𝐴𝑛, {𝑥}〉, i.e., 𝛼 is a prefix of 𝛾 and the item x appears in an itemset

occurring after all itemsets of 𝛼. A sequence 𝛾 is said to be an i-extension of 𝛽 with an

item x, if 𝛾 = 〈𝐵1, 𝐵2, … , 𝐵𝑚 ∪ {𝑥}〉 and the item x is the last item occurring in 𝑆𝛾

according to the total order ≺. For example, the sequence 𝛼 = 〈{𝑎, 𝑑}, {𝑏}, {𝑐}〉 would

 9

be a s-extension and 𝛽 = 〈{𝑎, 𝑑}, {𝑏, 𝑐}〉 would be an i-extension of the sequence 𝛾 =

 〈{𝑎, 𝑑}, {𝑏}〉 as the prefix and the item c as an extension.

Figure 2. Breadth-first (left) vs. depth-first search (right).

The mining algorithms can be categorized in being either depth-first search or

breadth-first search algorithms [4]. An example visualization of both search methods

is given in Figure 2. The breadth-first search, also called level-vise approach, will scan

the database for frequent 1-sequences, then generate all 2-sequences by performing s-

extensions and i-extensions, then all 3-sequences using the 2-sequences and so on until

no sequences can be generated. The enumeration problem for long sequences can have

a huge search space, and the search might fail due to memory and runtime errors.

Therefore most of the recent algorithms tend to explore the search space in the depth-

first order. Depth-first algorithms also start with sequences containing single items,

but then recursively perform i-extensions and s-extensions with only one of the

sequences to generate larger sequences in each recursive step. If no more extension

can be performed the algorithm backtrack, to generate other sequences with the same

prefix but another item as an extension.

To reduce the computation cost of the mining task, designing an efficient

algorithm requires to integrate techniques, referred to as pruning, to avoid exploring

the whole search space. One of the most common pruning techniques is based on the

so-called apriori property, also known as downward-closure property or the anti-

monotonicity property. This property states that any non-empty subset of a frequent

itemset must also be frequent. It can be also be applied to sequential patterns indicating

that if the sequence 𝛼 is included in the sequence 𝛽, then 𝜎𝛼 ≥ 𝜎𝛽. The application of

this property can greatly reduce the search space since any pattern candidate which is

infrequent cannot generate frequent extensions. [6]

3-items

2-items

1-items

0-items {}

{a}

{a,b}

{b}

{a,b}

{a,b,c}

{c}

{b,c}

3-items

2-items

1-items

0-items {}

{a}

{a,b}

{a,b,c}

{b}

{b,c}

{c}

 10

2.2.2 Traditional Itemset Mining Task

One of the most common tasks in data mining is to find frequent itemsets or

groups of items frequently appearing together in a database. Since this knowledge has

numerous real-life applications and domains like market basket analysis,

bioinformatics, text mining, product recommendation, e-learning, and Web analysis,

this field of data mining became a popular and active research topic. Two major

approaches have been introduced to address this problem.

Apriori-Based

The algorithm proposed by Agrawal and Srikant was the first of its kind in the

field of FIM. It was initially intended for analyzing customer data but is now viewed

as a general data mining task. [6]

The pseudocode of the Apriori algorithm is given in Figure 3. It starts with an

initial scan of a transaction database to calculate the support for each distinct item (line

1). This information is used to identify a set of all frequent items, denoted as 𝐹1,

meeting the given minimal support threshold (line 2). Then a breadth-first search is

performed to find extended itemsets (lines 4-10). During the search, the Apriori first

generates all potential itemsets of length 𝑘, denoted as 𝐶𝑘, by combining the already

observed frequent itemset 𝐹𝑘−1 (line 5). All candidate items which contain some (𝑘 −

1)-itemset that is not in 𝐹𝑘−1 violate the downward-closure property. They are

therefore removed from 𝐶𝑘 (line 6). The support values for all remaining itemsets is

calculated by scanning the database (line 7). The search is repeated for all candidates

𝐹𝑘 meeting the 𝜎𝑚𝑖𝑛 threshold until no new candidates can be generated.

Many other algorithms have been inspired by the Apriori algorithm and use the

key feature of pruning by the downward-closure property. However, there are some

significant limitations to the original algorithm. First, the Apriori generates candidates

without looking at the original database, which can result in creating candidates which

are not observed at all. Second, the algorithm needs to scan the database each time the

candidates are evaluated. Another important limitation is the breadth-first search,

which in the worst case requires to keep all patterns in memory at any time. [7]

 11

Figure 3. The Apriori algorithm. [6, 7]

FP-Growth

Algorithms like Eclat [10] improved upon the Apriori by using a depth-first

search. However, many of the bottleneck features, especially the candidate generation,

of Apriori remained unsolved until the frequent pattern growth (FP-Growth) algorithm

was introduced by Han, Pei, and Yin in 2000 [11].

To avoid generating candidates which do not appear in the database the FP-

Growth algorithm is using an extended prefix-tree structure, called frequent-pattern

tree (FP-Tree). The mining task is transformed from mining the database into mining

this compact tree. The tree structure provides a compact view of the data with an

additional header table for every distinct item that satisfies the support threshold.

Additionally, the concept of a projected database is introduced to reduce the explored

search space effectively. The following section outlines these concepts of FP-Growth

algorithms. [7, 12]

The core method uses a recursive divide-and-conquer strategy to retain

associations between items without candidate generation. The pseudocode of the FP-

Growth algorithm is given in Figure 4. The initial input is the transaction database

TDB, a minimal support threshold 𝜎𝑚𝑖𝑛 and an empty itemset X . It starts with an initial

scan of the TDB to find the set I of frequent items given the 𝜎𝑚𝑖𝑛 threshold (line 2).

For each found item i, the itemset 𝑋 ∪ {𝑖} has to be a frequent itemset and therefore is

added to the output (line 4). Since not all items of the TDB can be appended to generate

an extended frequent itemset, a projected database (concept outlined in the example

Input: TDB : Transaction database, 𝛔𝐦𝐢𝐧: Minimum support threshold.

Output: Set of frequent itemsets.

1. Scan the database TDB to calculate the support for all items in I ;

2. 𝐹1 = {𝑖|𝑖 ∈ 𝐼 ∧ 𝜎𝑖 ≥ 𝜎𝑚𝑖𝑛}; // F1 : frequent 1-itemsets

3. 𝑘 = 2;

4. While 𝐹𝑘 ≠ ∅ do

5. 𝐶𝑘 = 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝐹𝑘−1); // Ck : candidate k-itemsets

6. Remove each candidate 𝑋 ∈ 𝐶𝑘 that contains (𝑘 − 1)-itemset that is not in 𝐹𝑘−1;

7. Scan the database TDB to calculate the support of each candidate 𝑋 ∈ 𝐶𝑘;

8. 𝐹𝑘 = {𝑋|𝑋 ∈ 𝐶𝑘 ∧ 𝜎𝑋 ≥ 𝜎𝑚𝑖𝑛}; // Fk : frequent k-itemsets

9. 𝑘 = 𝑘 + 1;

10. End

11. Return ⋃ 𝐹𝑛𝒏=𝟏…𝒌

 12

below) on the itemset 𝑋 ∪ {𝑖} is created to find only frequent itemsets which appear in

the TDB (line 5). This projection is then used to perform a recursive depth-first search

on the itemset 𝑋 ∪ {𝑖} with respect to the minimum support threshold 𝜎𝑚𝑖𝑛 (line 6).

After the recursive search, all items in X are frequent itemsets. Note that the database

scan is reduced to a minimum cost, since the information needed for extending the

itemsets is obtained from the very compact projected database. Further, the generated

candidate itemsets can only be sets which are truly observed in the database, thus

avoids considering many itemsets which do not appear at all. [7]

Figure 4. The FP-Growth algorithm. [7, 11]

To illustrate these steps the example TDB from Table I is used once more with

the minimum support threshold 𝜎𝑚𝑖𝑛 = 2. After an initial scan of the database, the

frequent 1-itemsets are {𝑎} with 𝜎 = 2, {𝑏} with 𝜎 = 3 and {𝑓} also with 𝜎 = 3. The

algorithm will create a projected database for each of these itemsets to perform the

mining task. The projected database 𝑇𝐷𝐵′ of any item i is defined by an transaction

set where i appears, but all preceding items according to the general total order ≺ and

the item i itself have been removed. To find the frequent extensions the algorithm will

scan the projected database for each itemset and estimate the support values. The

algorithm will follow the depth-first search recursively for each frequent set found in

the projection until all frequent sets have been explored. An example for the search in

the projected databases of {𝑎} is shown in Table IV and Table V.

Table IV. Projected database of {𝑎}.

TID Transaction 𝝈

1 {𝑏, 𝑓} 2

3 {𝑏, 𝑒, 𝑓} 1

Table V. Projected database of {𝑎, 𝑏}.

TID Transaction 𝝈

1 {𝑓} 2

3 {𝑒, 𝑓} 1

Input: TDB : Transaction database, 𝛔𝐦𝐢𝐧: Minimum support threshold, X : the current itemset (initially 𝑋 = ∅).

Output: Set of frequent itemsets.

1. Function 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐺𝑟𝑜𝑤𝑡ℎ(𝑇𝐷𝐵, σmin, 𝑋)

2. Scan the database TDB to find the set I of all frequent items in TDB;

3. Foreach item 𝑖 ∈ 𝐼 do

4. Output 𝑋 ∪ {𝑖}; // X ∪ {i} is a frequent itemset

5. 𝑇𝐷𝐵′ = 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝐷𝐵, 𝑖); // Create a projected database of X ∪ {i}

6. 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐺𝑟𝑜𝑤𝑡ℎ(𝑇𝐷𝐵′, σmin, 𝑋 ∪ {𝑖}); // Recursive call to extend X ∪ {i}

7. End

 13

Pattern-growth algorithms offer many improvements over the original Apriori

design. However, there are also limitations and optimizations which have been

addressed in related research. Especially the cost to create a projected database was

evaluated and optimized by a pseudo-projection, which consists of pointers on the

original database. Note that many other improvements, e.g., Map-Reduce paradigm,

can be integrated into a pattern-growth algorithm. [7]

2.2.3 Efficiency Improvements by Novel Designs

Itemset mining and related topics have been an active research topic for almost

thirty years and still offer countless opportunities for research. Especially a lot of effort

was made to enhance the performance by novel data structures and algorithm designs.

This is one of the most important problems since the mining task can be very time-

consuming. Much of the past research has focused on reducing the search space (e.g.,

early pruning techniques), operations on the data (e.g., IDLists) or a smart way of

representing the itemsets to save memory (e.g., bitvector representation). Some of the

algorithms introduced in the last decade propose designs which allow running parallel

mining task on distributed systems, GPU’s or multicore to increase speed and

scalability. Furthermore, there have been plenty of extensions and variations from the

original field of FIM, for example, high-utility itemset mining, rare-pattern mining or

association rule mining. [4, 13–15]

2.2.4 Extensions

Before introducing specific algorithms some necessary extensions and

techniques are described, which may be included in the mining task. Many of these

extensions are used as some constraint to limit the search space and improve mining

efficiency [8, 16]. This section will only outline extensions which are used in the

application developed as part of this work.

Length Constraint

One of the easiest ways to limit the search space is by specifying the minimum

and maximum length of the candidate patterns. This constraint may be useful to find

more meaningful sequences without getting lost in the depth of the search tree. [16]

 14

Item Constraint and Regular Expression Mining

Specifying items which have to or should not be present in the candidate itemsets

is a powerful way to limit the results to a user-specific focus. This constraint can be

extended to perform mining based on regular expressions over the set of items. [17]

Time, Time-Window or Duration Constraint

This constraint is defined only in sequential pattern mining or time series mining

since it requires some time-stamp in the database. The candidate patterns are pruned

such that the time difference between the first and last transactions must not be longer

or shorter than a given period. [8, 18]

Gap Constraint

This constraint is also defined only for sequential pattern mining tasks. It

requires that the time difference between any transactions in the candidate pattern is

not longer or shorter than the given gap interval. This constraint type is prevalent in

text and language analysis since words in a sentence often have direct relationships to

their immediate neighbors. [16]

Weighted Pattern Mining

This approach extends the traditional frequent pattern mining problem by giving

each item a weight instead of treating each item uniformly. Therefore each item in the

database has different importance for the outcome. For example, profits of retail items

used in market basket analysis or the term frequency-inverse document frequency are

common weights to find more interesting frequent itemsets. [19]

Multi-dimensional Mining

Real world application datasets may have associations from multidimensional

space. For example, customer purchase behavior often depends on local or regional

events, time, date, customer group, and others. Finding patterns associated with multi-

dimensional information is a solvable problem. But, compared to the traditional FIM

task, the proposed methods suffer in terms of performance and efficiency. [20, 21]

High-Utility Mining

Similarly to the weighted pattern mining the problem of high-utility itemset

mining, also referred to as simple utility mining, extends the traditional FIM problem

by item weight. Additionally, utility mining also takes into account the number of

items in each transaction. Especially for customer basket analysis, this kind of mining

 15

became very popular in the last decade, since discovering frequent high-utility itemsets

offers a smart way to analyze the cooccurrences of items and maximize the profit of

each transaction. [22, 23]

Uncertain Pattern Mining

Various real-life applications have probabilistic datasets of uncertain data.

Uncertain frequent pattern mining extends the traditional FIM to address this kind of

problem. Some of the recent research in this field suggests combining the traditional

mining task results with some kinds of density-based clustering methods to deal with

uncertain data and outliers. [24]

2.3 EXTENSIONS FOR BIG DATA MINING

Different kind of efficient pattern mining algorithms have been implemented,

yet not all of them are scalable enough to deal with the “Big Data” datasets collected

nowadays. There is an obvious need to develop tools which can complete the mining

task concerning the time and memory complexity of the problem [25]. This section

outlines the main concepts used by some of the algorithms included in the framework.

2.3.1 Parallelism

Some of the serial tasks, e.g., the computation of support of generated

candidates, can be parallelized. However, this naive approach relies on assumptions

like an unlimited process memory and concurrent data operations. Memory scalability,

task partitioning, and load balancing are the most critical problems to solve while

designing a parallel algorithm. [25, 26]

Memory scalability is the problem of fitting the data in memory. Note that, even

if the input data is small enough to be loaded into memory, the process itself might

fail, e.g., the candidate generation or the data structures used by the algorithm may be

too large. [25]

To design efficient parallel algorithms the process has to be divided into smaller

units of work, called tasks, where each task is independent and can be executed

concurrently. To archive an efficient design the computational work by each task has

to be distributed equally while minimizing the inter-processor communication cost

between the tasks. The mining tasks tend to be highly irregular depending on the input

dataset and the algorithm parameters chosen by the user. Therefore, the computational

 16

work assigned to a task can lead to imbalanced processing. Dynamic load balance

methods attempt to actively assign work to a process and minimize the idle time. [25]

2.3.2 Distributed Systems

While parallelization attempts to execute processes concurrently on the same

machine, a distributed system consists of multiple machines working together but

appear as a single computer to the end user. The machines share information and state

through messages, operate concurrently and do not depend on each other. Two

common paradigms, Message Passing and Map-Reduce, are used to develop memory

distributed systems. Especially the more recent Map-Reduce paradigm is specifically

designed for working on Big Data sets and was used in some of the recent mining

algorithms. [27, 28]

2.4 SEQUENTIAL PATTERN MINING ALGORITHMS

As far as the literature review indicates, the SPMF data mining library [29] is

the largest collection of open-source implementations of sequential mining algorithms.

It provides more than 120 different pattern mining algorithms implemented in Java

and can be integrated into other applications or run as standalone software [14]. Most

of the algorithms used in this work are available through the SPMF library.

Many of the algorithms developed in the field of sequential pattern mining are

based on previous work and improved upon limitations of other algorithms. Since there

is a large number of different extensions and parameters which are addressed in

specific mining tasks this section will only discuss the main deviations and differences

from other implementations. An overview of all sequential pattern mining algorithms

used for the implementation in this project is shown in Table VI and is surveyed in the

following section.

Agrawal and Srikant formally defined the sequential pattern mining problem in

transactional databases in 1995 as an extension of their original Apriori algorithm.

Progress in barcode technology has made it possible to collect and store massive

amounts of market basket data, which was the primary purpose of this analysis. They

introduced the basic concept of association rules, which refer to intra-transaction

patterns, and sequential patterns, which relate to inter-transaction patterns. The

original Apriori algorithm was already capable of discovering association rules within

 17

itemsets. To find patterns in a sequence of itemsets they introduced and evaluated three

new algorithms – AprioriAll, AprioriSome, and DynamicSome. [5]

Table VI. Sequence mining algorithms overview.

Year Algorithm Constraint Features

1995 AprioriAll [5] First algorithm for sequential pattern mining. Adoption of original Apriori algorithm.

2002 SPAM [30] Depth-first sequence mining on vertical bitmap representation of data.

2003 CloSpan [31] Closed FP-Growth algorithm for discovering closed sequential patterns.

2003 TSP [32] Closed Mining top-k frequent sequential patterns.

2004 BIDE [33] Closed Mining closed sequential patterns without candidate maintenance.

2013 ClaSP [34] Closed Mining closed patterns on a vertical data representation with additional pruning.

2013 MaxSP [35] Maximal Mining maximal sequential patterns.

2013 MG-FSM [36] Sequence mining algorithm with the gap-threshold build on Map-Reduce paradigm.

2013 TKS [37] Mining top-k frequent sequential patterns on a vertical data representation.

2014 CM-ClaSP [38] Closed Co-occurrence pruning as modification to original ClaSP.

2014 CM-SPAM [38] Co-occurrence pruning as modification to original SPAM

2014 VMSP [39] Maximal Mining maximal sequential patterns on a vertical data representation.

2015 CloFAST [40] Closed Closed sequence mining algorithm based on sparse id-lists pruning.

2016 LASH [41] Sequence mining with hierarchies built on MapReduce paradigm.

2016 Skopus [42] Mining exact top-k sequential patterns under leverage.

The SPAM algorithm proposed by Ayres et al. in 2002 was one of the first

algorithms which utilized a depth-first search strategy for mining sequential patterns.

Additionally, the algorithm uses a vertical bitmap representation of the data for

effective counting of the support values and candidate generation. [30]

CloSpan is a pattern-growth algorithm for discovering closed sequential patterns

in sequence databases, proposed by Yan et al. in 2003. The main concept used by the

algorithm is the equivalence of projected databases. This concept was shown to be

effective as a method to effectively prune the search space. [31]

Sequential pattern mining often generates an exponential number of patterns if

the database consists only of long frequent sequences. Also, the outcome of the mining

task heavily depends on the 𝜎𝑚𝑖𝑛 value – small values may lead to many patterns which

are not relevant, whereas big values may not show any outcome at all. Tzvetkov et al.

try to address these limitations by the algorithm called TSP. It takes two additional

parameters, minimum pattern length (min-l) and the desired number (top-k) of

sequential patterns with the highest overall support, to reduce the results to a relevant

but manageable size. [32]

 18

The sequential pattern mining algorithm BIDE was proposed by Wang et al. in

2004. BIDE introduces a concept for mining closed sequences without candidate

maintenance and was shown to outperform previous work in terms of memory

consumption significantly. [33]

In 2013 Gomariz et al. proposed the sequential pattern mining algorithm called

ClaSP. It combines the vertical database layout with several efficient search space

pruning methods to mine closed patterns. [34]

Fournier-Viger et al. proposed MaxSP in 2013 – a maximal sequential pattern

mining algorithm without candidate maintenance. Mining frequent patterns degrade

the performance of the mining task in terms of execution time and memory

requirement and become worse with longer sequences. Mining only the maximal

patterns may help to reduce the number of patterns to the more meaningful ones.

However, previous algorithms needed to maintain a large number of intermediate

candidates in main memory for this mining task. MaxSP neither produced redundant

candidates nor stores intermediate candidates in main memory and was therefore

shown to be efficient. [35]

MG-FSM was proposed by Miliaraki et al. in 2013 as a highly scalable frequent

sequence mining algorithm build on the Map-Reduce paradigm. Since the primary

purpose of this algorithm is n-gram mining in large-scale text datasets, it is the first

distributed FSM algorithm that supports a general gap constraint. [36]

Similar to the TSP the TKS algorithm proposed by Fournier-Viger in 2013 aims

to discover only the top-k sequential patterns, where k is the number of sequential

patterns to be found and is set by the user. TKS uses a vertical database representation,

a basic candidate generation procedure as SPAM and several effective strategies to

prune the search space. TKS outperforms TSP in terms of execution time and memory

usage, especially on dense datasets. [37]

Algorithms which use a vertical database format (e.g., ClaSP or SPAM) provide

advantages in candidate generation and support count without rescanning the database.

However, an important performance bottleneck remained since they use a generate-

candidate-and-test approach. In 2014 Fournier-Viger et al. propose a new effective

candidate pruning mechanism for vertical sequential pattern mining algorithms. It is

based on item co-occurrence information, which is stored in a new data structure

 19

named Co-occurrence MAP. The resulting algorithms are named with “CM-“ as a

prefix, e.g., CM-ClaSP, CM-SPAM. [38]

The VMSP algorithm proposed by Fournier-Viger et al. in 2014 is the first

algorithm for mining maximal sequential patterns on vertical data representation. To

prune the search space and identify the maximal patterns efficiently the algorithm uses

three different strategies – EFN (Efficient Filtering of Non-maximal patterns), FME

(Forward-Maximal Extension checking) and CPC (Candidate Pruning by Co-

occurrence map). [39]

Fumarola et al. propose an algorithm, named CloFAST, for mining closed

sequential patterns in 2015, which uses a novel representation of the dataset based on

sparse id-lists and vertical id-lists. These data structure properties allow both to check

the closure property and prune the search space in a single step. CloFAST is

empirically proven to outperform the state-of-the-art algorithms, especially when

mining long closed sequence patterns. [40]

In 2016 Beedkar and Gemulla introduce a new algorithm named LASH, for

mining sequential patterns in the presence of hierarchies. Additionally to the sequence

dataset LASH allows to input information about the hierarchy of items, e.g., “Barack

Obama” may generalize to “politician” to “person”. This generalization can be used to

find sequential patterns and relations on multiple levels, which otherwise would be

hidden. LASH is closely related to the MG-FSM algorithm. It is also built primarily

for text mining on the Map-Reduce paradigm and supports the gap constraint. [41]

Petitjean et al. introduce leverage as a new measure of interest and propose a

new sequence mining algorithm, named Skopus, to discover the top-k patterns under

this measure. Most frequent patterns in real-world datasets are not interesting since

they simply correspond to the permutation of the most frequent items. For example,

given a large text as the dataset, the results of a sequence mining task would show that

the most frequent patterns are permutations of stop-words like “and”, “to” and “of”.

This illustrates that the support is not a good measure for interestingness of the

patterns. The leverage measure shows if the pattern is more frequent than can be

explained by an independence assumption of the sub-patterns it is composed of. It is

shown that leverage may be used to discover more relevant patterns, consistent with

the definition of expected support. [42]

 20

2.5 DATA MINING IN HEALTHCARE

All public and private health institutes are producing and collecting enormous

amounts of data. There is an obvious need to provide automated tools for discovery

and analysis of useful information in an interpretable way. Several studies propose

novel methods which support administrative and medical decision estimation, e.g.,

decisions regarding treatments, disease prediction, health policies. Most of the

common data mining techniques such as classification, clustering, and regressions are

crucial for making decisions regarding patients’ health. Especially in combination with

the fast-growing trend of machine learning diagnostic methods and treatments are

improving rapidly. [43, 44]

2.5.1 ICD-9-CM Codes

Some of the challenges are important to point out when working with healthcare

datasets. One of the most significant is to acquire the precise and complete set of data.

Due to its nature, the medical data is complex, heterogeneous and collected from

different sources while quality, accuracy and privacy concerns have to be maintained

during the whole process. In recent years standardized datasets became available and

publicly accessible. [44]

The International Statistical Classification of Diseases and Related Health

Problems, commonly referred to as ICD, was established by the World Health

Organization (WHO) to track morbidity and mortality rates across the world. It

provides a unique, up to five characters long, alpha-numeric code to classify diseases

and a wide variety of signs, symptoms, abnormal findings, diseases and others. The

most recent version ICD-11 (11th Revision) was released in June 2018. [45]

The ICD-9-CM (9th Revision, Clinical Modification) is the U.S. health system's

adaptation which was created primarily for billing purposes. In clinical practice, ICD-

9-CM codes have been widely used as a record of patient diagnoses, symptoms, and

conditions. [46]

The ICD-9-CM version consists of 22,401 distinct codes arranged hierarchically

in 19 chapters, also referred to as groups, e.g., “Infectious And Parasitic Diseases” or

“Diseases Of The Digestive System”. The first digit of the code is alpha-numeric,

followed by a minimum of two and a maximum of four digits. The first three characters

define the category of the disease, disorder, infection or symptom. For example, V83

 21

encodes “Genetic carrier status”, 250 encodes “Diabetes mellitus”, 250.1 encodes

“Diabetes with ketoacidosis”, and 250.13 encodes “Diabetes with ketoacidosis, type

I [juvenile type], uncontrolled”.

Table VII. Statistics for the full dataset.

A
V

E
R

A
G

E
 S

E
Q

-

L
E

N
G

T
H

4
0
,8

9

3
9
,3

5

2
5
,3

6

2
8
,3

6

2
1
,6

2

3
4
,6

7

2
6
,9

0

3
6
,8

0

3
3
,3

7

4
2
,7

5

4
3
,4

3

5
7
,7

0

5
7
,2

7

6
7
,4

0

6
7
,2

3

7
2
,0

9

6
0
,4

3

6
1
,1

3

3
9
,8

1

3
7
,6

4

4
1
,6

3

4
7
,7

9

4
4
,7

1

M
A

X
 S

E
Q

-

L
E

N
G

T
H

2
0
4

1
6
7

1
8
9

2
0
0

1
9
8

2
1
3

2
1
6

2
2
4

2
1
6

2
3
6

2
7
1

2
5
3

2
5
0

2
5
8

2
7
5

2
6
1

2
7
0

2
8
7

1
8
6

2
8
7

2
2
7
,5

0

2
3
8
,6

0

2
3
3
,0

5

V
A

L
ID

S
E

Q
U

E
N

C
E

S

1
.7

7
2
.8

7
7

1
.6

2
0
.4

6
8

1
.5

9
0
.0

4
4

1
.5

2
8
.0

2
3

1
.5

9
8
.7

8
9

1
.7

2
1
.7

4
2

1
.5

9
3
.3

1
3

1
.6

9
8
.3

5
5

1
.4

5
7
.3

8
7

1
.5

5
5
.0

6
0

8
4
4
.4

9
7

8
9
3
.4

6
3

6
6
6
.1

6
1

6
8
9
.8

7
7

5
1
7
.4

5
7

4
1
6
.1

8
8

1
2
8
.4

2
2

1
3
5
.7

0
7

4
.3

1
3

7
.5

6
5

1
0
.1

7
3
.2

6
0

1
0
.2

6
6
.4

4
8

2
0
.4

3
9
.7

0
8

D
IS

T
IN

C
T

 I
C

D
-

C
O

D
E

S

1
.4

0
6

1
.3

4
9

1
.3

3
4

1
.3

4
5

1
.3

4
6

1
.4

5
0

1
.3

7
6

1
.4

9
4

1
.3

9
2

1
.5

2
1

1
.3

7
8

1
.4

4
6

1
.4

1
4

1
.4

3
7

1
.4

0
7

1
.4

0
3

1
.2

4
9

1
.2

5
0

7
5
8

8
1
3

1
.6

4
4

1
.7

1
8

2
.1

7
9

D
IS

T
IN

C
T

P
A

T
IE

N
T

 I
D

S

1
.8

2
7
.4

4
7

1
.6

7
7
.3

6
5

1
.6

7
8
.4

1
5

1
.5

9
5
.0

5
7

1
.7

6
7
.1

6
3

1
.7

8
0
.0

9
5

1
.7

3
7

.7
1
5

1
.7

6
5
.8

6
6

1
.5

7
7
.3

2
0

1
.6

3
1
.9

6
8

8
9
8
.1

5
0

9
3
0
.4

9
6

6
9
2
.0

6
1

7
1
1
.0

9
6

5
3
2
.3

0
8

4
2
7
.8

2
1

1
3
3
.4

8
0

1
4
1
.2

2
5

4
.7

6
9

8
.5

1
5

1
0
.8

4
8
.8

2
8

1
0
.6

6
9
.5

0
4

2
1
.5

1
8
.3

3
2

F
IL

E
 S

IZ
E

2
.5

0
2
 G

B

2
.0

9
5
 G

B

9
6
6
 M

B

9
9
9
 M

B

8
3
4
 M

B

1
.5

4
3
 G

B

1
.1

1
1
 G

B

1
.7

1
7
 G

B

1
.2

8
9
 G

B

1
.8

1
8
 G

B

1
.0

1
0
 G

B

1
.4

4
4
 G

B

1
.1

8
9
 G

B

1
.4

4
1
 G

B

1
.2

2
6
 G

B

1
.0

2
8
 G

B

2
7
7
 M

B

2
8
3
 M

B

5
 M

B

9
 M

B

1
0
.4

0
9
 G

B

1
2
.3

7
6
 G

B

2
2
.7

8
5
 G

B

T
R

A
N

S
A

C
T

IO
N

S

8
6
.3

0
9
.9

9
1

7
2
.4

9
2
.5

2
9

3
3
.1

2
7
.3

7
3

3
4
.2

7
7
.9

4
3

2
8
.2

4
4
.2

3
7

5
2
.5

1
2
.2

2
6

3
7
.3

1
4
.0

5
3

5
8
.1

2
5
.0

5
5

4
2
.6

8
5
.0

7
5

6
0
.5

0
6
.3

5
5

3
2
.8

6
8
.5

1
9

4
6
.9

3
3
.3

2
8

3
8
.1

4
3
.3

7
8

4
6
.0

4
8
.7

0
7

3
8
.7

9
7
.1

6
9

3
2
.4

6
8
.5

1
1

8
.7

4
3
.8

4
1

8
.9

2
8
.9

4
9

1
7
0
.0

6
6

2
7
4
.3

7
6

3
4
6
.4

0
3
.7

0
2

4
1
2
.5

6
7
.9

7
9

7
5
8
.9

7
1
.6

8
1

G
E

N
D

E
R

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

A
L

L

A
G

E

0

1

2

3

4

5

6

7

8

9

0
-9

0
-9

0
-9

2.6 DATASET

The dataset was obtained from Taiwan’s National Health Insurance Research

Database (NHIRD). A mapping tool was used to convert the claimed records to a

transaction dataset with ICD-9-CM disease codes. It contains more than 758 outpatient

 22

visits and 2179 distinct disease categories, that were observed in the entire Taiwanese

population of over 21 million individuals. The subjects were followed for 36 months

from January 1st, 2000 through December 31st, 2002. Each was attributed to a specific

gender- and age-group, e.g., male and female, aged 0 to 9, 10 to 19, … , and 90 to 99

years. Detailed statistics of the dataset are shown in Table VII.

2.7 WEB APPLICATION TECHNOLOGIES

This section introduces the concepts of Web technologies used for this work.

Nowadays, there exist various ways to develop a Web application. One of the most

common to create dynamic Web applications in Java is provided by the Java™ EE

Specification API’s [47]. An overview of the Servlet & JavaServer Pages (JSP)

technologies is shown in Figure 5 and outlined in the following section.

UI

Java Servlets

Java Classes

JSP + JSF

CSS
(+ Bulma)

JavaScript
(+ jQuery)

Update

Use

Render

Data Storage

Read/Write

Browser

Request / Response

Figure 5. Overview of the basic Servlet & JavaServer Pages Web application.

The Apache Tomcat server is used as a Web servlet container on which the

application is deployed. When a Web application is loaded, the ServletContainer

creates the ServletContext once and keeps it in the memory. A client can access the

application through a Web browser. The server listens to these requests on a defined

HTTP port. The ServletContainer then creates new HttpServletRequest and

HttpServletResponse objects and passes them down to the Servlets. The Servlets

represent the controller component, which is used to invoke actions by the client,

access the underlying model and pass information to the view. Standard Java classes

 23

are used to implement the underlying logic, make data operations and represents the

state of the application. A Servlet performs actions based on the HttpServletRequest

and passes requested models to the JavaServer Pages of the Web application. JSP is a

Java-based technology, which allows writing templates in client sided languages, e.g.,

HTML, CSS or JavaScript. Additionally, JSP supports tag-libraries, e.g., JavaServer

Pages Standard Tag Library (JSTL), and Expression Language (EL). This makes it a

powerful technology to dynamically control the routing, output and enables resolution

of Java objects and methods. To implement a modern, responsible and modular

interface the open source CSS framework Bulma is used [48]. The open source

JavaScript library jQuery is used for some client sided HTML manipulations, event

handling, CSS animation and Ajax [49].

 24

3. REQUIREMENTS ANALYSIS

This chapter discusses the requirements for the development of the Disease

Pattern Miner – a domain-specific interactive knowledge discovery framework.

Identifying the project’s objectives and requirements is an important step in the process

of developing a new (Web-based) application is. It is essential to include and adapt the

requirements to both experts domain knowledge and knowledge derived during the

mining and modeling process.

3.1 REQUIREMENTS

This section briefly lists the main functional and non-functional requirements

derived from the supported scenarios as well as the additional requirements and

specifications determined during the literature review and implementation. The

requirements are explained in detail in Sections 3.2 and 3.3.

3.1.1 Functional Requirements

[R1] The user wants to upload a transaction dataset meeting a specified predefined format.

[R2] The application should filter the dataset.

[R3] The application should split the dataset into smaller gender-age-group transaction

files.

[R4] The user wants to select the transaction files which will be used in the mining task.

[R5] The user wants to create a mining algorithm task.

[R6] The user wants to specify or change the mining task parameters.

[R7] The user wants to run the mining processes.

[R8] The application should convert the transaction files to sequence files.

[R9] The user wants to view the collected results in a single table.

[R10] The user wants to filter the results table.

[R11] The user wants to export the results table to a downloadable file.

[R12] The application should find all patients having a specific frequent pattern.

[R13] The user wants to view the most frequent codes for a specific table cell.

 25

[R14] The user wants to view the visualization of patient trajectories for a specific frequent

pattern.

[R15] The user wants to filter the trajectory model.

[R16] The user wants to export the visualized model to a downloadable file.

3.1.2 Non-Functional Requirements

[R17] The framework shall be a server sided Web application.

[R18] The system shall load all files on restart automatically.

[R19] The application should work on different browsers.

[R20] The results table may show which algorithm produced the entry.

[R21] The algorithms shall have a default set of parameters.

[R22] The algorithms run may not block any actions by the user.

[R23] The application gives feedback about the status of the mining processes.

[R24] The user interface is split in different views which can be accessed by a standard

menu.

[R25] All algorithms have to be available open-source.

[R26] All algorithms solve a sequential mining task.

[R27] No multi-language support.

3.1.3 Elicitation of Additional Requirements and Specifications

[R28] Hard drive space is not restricted.

[R29] The system may process large data files or at least reduce the data to a manageable

size.

[R30] The Heap and RAM shall be limited not to exceed the server capabilities.

[R31] All algorithms have to be implemented in Java.

[R32] Algorithms may take into account hierarchical constraints.

[R33] No algorithms for …

a. Itemset Mining, since time order is supposed to be taken into account.

b. Association Rule Mining, since the output is supposed to be a sequence.

c. High-Utility Mining, since no utilities are given.

 26

3.2 MINING PIPELINE

The initial goals of this work were to apply data mining methodology to find

gender- or age-group-specific patterns of disease-disease associations, which are the

most relevant. Building a data processing pipeline is crucial to developing a data

mining application. This allows to break down and define the process, identify the

activities and describe the specific problems involved in this work. The pipeline

developed as part of the initial requirements gathering is presented in Figure 6 and is

explained in detail in the following section. The derived requirements are referenced

within the text by number and summarized in Section 3.1.

Start Web
Application on

Server

Load Data-Files

Run Algorithms in
sepperate
Threads

User selects Algorithm Type and
specifies Parameter

Collect all Results
in single Table

User selects Data-Files

Export Result-
Table

Give Feedback about current
Status

User selects Filter for Results-
Table

User creates Algorithm

Upload Data-Files by the User

Figure 6. The data mining pipeline.

 27

The first step in the pipeline is to set up the dependencies necessary to compile

and deploy the project on a server sided Web application [R17]. After starting the Web

server, the user should be able to access the application through any browser

[R19][R24]. This is necessary due to two reasons. First, the user profile, who might be

using the application, is limited to experts in the field of disease associations analysis

and data mining. This user group requires to be able to share their data sources as well

as the results. Second, the mining algorithms may require a lot of computational

resources and run several hours or even days, depending on the dataset and the

parametrization of the task.

The next step should require the user to upload a transaction dataset meeting

some predefined format [R1]. This dataset should be filtered and transformed to meet

the models defined in the backend of the application [R2]. The user should then be

given the option to select all data which will be used in the mining process [R3][R4].

In the next step of the pipeline, the user shall create some mining algorithms,

which each may run in a separate thread [R5][R22][R25][R26]. Each of these mining

tasks shall have a default setup, but may be parametrized by the user if needed

[R6][R21]. The application shall run the mining algorithms on the selected data and

give feedback about the current status, success, and failure [R7][R8][R23].

If the algorithm finishes successfully it shall produce a result file with

information about the frequent patterns in the dataset [R20]. All results shall be

collected in a single table [R9]. Each row in this table shall be the frequent pattern, the

columns shall be gender-age-groups and the cells shall display the support values. The

table rows shall be sorted according to the highest support values in each row. The

user shall be able to filter this results table to find more meaningful and interesting

patterns [R10]. Further, the user should be given the option to export the table to a

downloadable file [R11].

3.3 EXPLOIT OF FREQUENT DISEASE PATTERNS

The table of the frequent patterns found in the sequence dataset may provide a

summarized visualization of the mining tasks. Differences regarding gender- or age-

groups could be observed just by this table. However, the pattern itself may not be

useful without the knowledge about the codes it was composed of. To extract and

exploit information about a specific frequent pattern the application shall find the

 28

complete set of patients having that pattern as a sub-sequence [R12]. This set shall be

used to detect the most frequent diseases in that group [R13]. Further, this set shall be

used to build an interactive model of the visualized patient disease trajectories [R14].

The user shall be able to select different gender- or age-groups and filter the model for

diseases and disease-groups [R15]. The model shall display support values for the

transitions between different conditions and visualize them in a meaningful way [R14].

The user should be given the option to export the model to a downloadable file [R16].

 29

4. DESIGN

The design chapter is built upon the requirements to define the overall system

architecture, models and user interfaces that are used for implementation. The

development was an incremental process. Experience gained during the

implementation and expert knowledge influenced the design.

4.1 ARCHITECTURAL DESIGN

The architectural concept is the first step to build the intended framework to

fulfill the defined requirements. Since the Disease Pattern Miner is not integrated into

an existing system, a monolithic design was chosen to implement the application as a

single contained unit having several modules. The modules of the framework, as

illustrated in Figure 7, are explained in more detail in the following section. Note that,

essential classes, interfaces, and data-structs of some modules are explained later in

Section 5.3.

data data

resources views

algorithms

manager (@WebListener) servlets (@WebServlet)

Figure 7. Framework module design.

The Disease Pattern Miner consists of two main modules – libraries and app.

The libraries module includes existing implementation of mining algorithms as

 30

independent child modules, e.g., SPMF1, LASH2, MG-FSM3. It is thus ensured that the

framework can be extended by other algorithms or libraries. Since the SPMF library

is developed in Java and appears to be the largest open-source collection of pattern

mining algorithms, all included mining algorithms have to be Java implementations

[R31].

The main module app includes three child modules – models, webapp and servlets.

These modules are implemented as part of this work to meet the defined requirements

from Section 3.1. The Model-View-Controller architecture is used to achieve a

separation of concern, which is also implied by the Servlet and JSP Web technology.

The module models includes three packages – data, algorithms, and results. They form

backend models and represent the state of the application. The view is implemented

by the module webapp, which has the package's resources, containing static resources

(e.g., CSS, JavaScript, Images), and views, comprising dynamically generated web

pages. Communication between model and view is realized through the servlets

module. The servlets are divided between either being managers (implementing

WebListeners) or servlets (implementing WebServlets). The managers are started up

when the application is loaded into the context while the servlets are invoked by an

user action.

4.2 USER INTERFACE DESIGN

Based on the Disease Pattern Miner requirements and the defined mining

pipeline several low-fidelity mock-ups were designed with prototyping tool Webflow

[50]. The website user interface follows a minimalistic design principle around the

content and main functionality. This ensures that the user can identify the goals and

navigate the application step by step. The following section introduces mock-ups to

show different visual aspects of this work. The mock-ups are later used to design the

Web application.

Figure 8 shows the mock-up of the main template, which is used across the entire

application. The proposed sketch is built with a standard website design having a

header and navbar at the top, a content section as the main body and a footer. This

1 http://www.philippe-fournier-viger.com/spmf/
2 https://github.com/uma-pi1/lash
3 https://github.com/uma-pi1/mgfsm

http://www.philippe-fournier-viger.com/spmf/
https://github.com/uma-pi1/lash
https://github.com/uma-pi1/mgfsm

 31

simple template design can be used across the entire application by simply replacing

the content section with the route specific content. The header and the footer are used

to enclose the application and show the site identity as well as useful links. Sitemaps

can be quickly accessed through the navbar at all time. The first item in the navbar is

a dashboard page, which is also the index page of the application. The dashboard page

provides some necessary information and main links to the project repository,

documentation as well as the related publications.

Figure 8. Mock-up of the main template used for all sites.

Figure 9. Mockup for the data view.

 32

The second navbar item is the data page. The mock-up of the data page is shown

in Figure 9. This page has two columns, which show the available data sorted by the

gender-age-group files. The user can select which of the files should be used during

the mining process. Further, the user is given the option to upload additional datasets.

Figure 10. Mock-up of the algorithm view.

The next navbar item is the algorithms page. The corresponding mock-up is

shown in Figure 10. This page displays a table of different algorithms. The user can

add new algorithms, change the type and the parameters. The algorithms can be run,

paused and canceled. The table also displays information about status and time when

the algorithm was executed and when it finished.

The next item in the navigation bar is the results page. The mock-up of the results

is presented in Figure 11. The results consist of two sections – filter options to reduce

the number of patterns displayed to the most relevant and the results table. The user

can add, parametrize or remove the filter. The content of the results table adjusts

automatically to these filters. The results table has frequent patterns as rows and the

gender-age-groups as columns. The patterns have some color visualization. The cell

entries are the support values of the pattern found by an algorithm in the corresponding

gender-age-group dataset. Further, the table is a heatmap, and the individual cells are

be highlighted according to their relative support values. By adding a color scheme,

the user may quickly identify distributions, importance, and similarities of patterns.

 33

Hovering a cell provides additional information about the associated dataset and

pattern.

Figure 11. Mock-up of the results view.

Figure 12. Mock-up of the explorer view.

The next navbar item is the explorer page. The mock-up design of this page is

shown in Figure 12. The results view is created to compare the found frequent patterns,

whereas the explorer view is designed to give insights to a specific pattern selected by

the user. A cell or pattern in the results view is linked to the corresponding explorer

 34

view. The explorer view has some basic options to adjust the model, e.g., options to

change gender or age. The main content section displays some interactive model build

from the set of patients having a specific pattern. The model visualizes patient disease

trajectories and displays the frequencies of disease sequences. The user can select

specific trajectories to highlight their connections and frequencies.

The last item in the navbar is a logs or statistics page. This view is not a main

component of the framework, and therefore no particular mock-up is designed. This

view provides statistical information about the algorithm runtimes and displays them

as text or graphs.

 35

5. IMPLEMENTATION

The development of the Disease Pattern Miner followed an agile approach with

multiple iterations for the application features. The different modules, as well as the

frontend, were created according to their design purpose. This section gives an

overview of software tools, the included libraries, and models used during the

implementation stage.

5.1 SOFTWARE DEVELOPMENT AND THIRD PARTY LIBRARIES

The development of large applications requires different tools to manage the

project, e.g., language version, editor, Web framework. This section introduces the

software tools and third-party libraries, which were used to develop the disease mining

framework described in this thesis.

The application was mainly developed in Java. Therefore the integrated

development environment (IDE) JetBrains IntelliJ IDEA [51] was used. IntelliJ comes

with Git [52] and Maven [53] integration out of the box and offers a user-friendly

interface. Further, IntelliJ can support nearly any language through the use of custom

language plugins.

Git is a distributed version control and source code management system. During

the development, a remote GitLab repository was used. After the implementation was

finalized, the project was moved to a public GitHub repository4 and published open

source under the MIT License to allow further research and the continuation of the

development [54].

Maven is used as a software project management and comprehension tool.

Maven allows dependency management including automatic updating and dependency

closures. The main modules libraries and app, as well as the child modules in

libraries each, come with their .pom-file. This allows each module to compile, test

and build independently while having a hierarchical dependency within the

application.

4 https://github.com/vitaliy-ostapchuk93/disease-pattern-miner

https://github.com/vitaliy-ostapchuk93/disease-pattern-miner

 36

The framework uses several third-party libraries. Only the most relevant libraries

for this work are introduced in the following section. Dependencies of the algorithms

child modules are not included. The complete dependency graph of the project is

provided in the public repository on GitHub [54].

The main dependencies used for the Web application development are the

Java™ EE Specification API’s [47], including Servlet, JSP, JSTL and more. This

library mainly is used to implement the communication between client and server (see

Sections 0 and 4.1).

Another important dependency is the Apache Commons IO [55] library. It

contains many utility classes, stream implementations, file filters, file comparators and

more. This library is used to perform fast read and write operations on the data.

One of the core dependencies is the Guava [56] library. Guava contains several

different libraries developed by Google. The most important used during the

implementation of this framework is the Guava’s Table interface and its multiple

implementations. These collections are used to implement the results table including

sorting and various filter options.

To provide some additional useful features to the Java 8 streams the library

StreamEx [57] is used. Streams help process large collections of data without keeping

all in memory at once.

To design a responsive, modern and modular user interface the CSS framework

Bulma [48] is used. Bulma is based on Flexbox and offers a large amount of well-

documented elements and design options, e.g., layouts, forms, buttons, modifiers,

containers, icons.

The application uses JavaScript on the client side to perform some HTML

manipulations, event handling or CSS animations. For example, the library Tippy.js

[58] is used for the tooltips animation and jQuery [49] used for asynchronous requests

to the server.

To visualize some of the data the Plotly [59] library is used. Plotly is a free,

open-source chart visualization library available in both JavaScript and Python.

Another important dependency to mention is the Data-Driven Documents (D3)

JavaScript library [60]. D3 is a framework build for visualizing data with Web

 37

standards like HTML, SVG, and CSS. This library was used to build an interactive

model of the disease sequences. To be more specific, a Sankey diagram [61] with the

extension of hierarchical bi-directional flow [62] was adapted to fit the requirements

of the model.

5.2 DATA PROCESSING PIPELINE

The sequence mining algorithms use file references as input in the mining

process, and the given dataset is provided as a single CSV-file. Therefore, the

application is using the file system storage instead of a database for all data

manipulations.

The dataset used in this study (see Section 2.6) is provided in the form of a CSV-

file. Each line is a transaction which encodes the gender, age-group, patient identifier,

date and one to three ICD-9-CM codes. Transactions which do not match the given

pattern or encode invalid values are removed from the dataset before further

manipulations. An example snippet is shown in Table VIII and is used in the following

section to illustrate the filtering and transformations to create the disease groups

sequence datasets. The resulting filtered and encoded sequence datasets are shown in

Table VIII.

Table VIII. Example snippet from the NHIRD dataset.

TID Gender

[FEMALE/MALE]

Age

[0-9]

Patient-ID Date

[YYYYMMDD]

ICD-9-CM Codes

1 FEMALE 0 PV63270480 20010108 {410}

2 MALE 3 KT61521480 20010107 {0740, 4661}

3 MALE 3 KT61521480 20010107 {V202}

4 FEMALE 0 PV63270480 20010109 {4659,7806,465}

5 FEMALE 0 PV63270480 20010127 {460,94400}

Several transformations and filters are applied before performing a mining

process on the data. Figure 13 illustrates the different steps in the data processing

pipeline. First, by splitting the dataset in gender-age-group CSV-files, the mining task

can be performed in specific groups of interest while also reducing the base size of the

input file to the base size of the specific group file. For instance, the example dataset

from Table VIII is separated into two files corresponding to the gender-age-groups 𝐹0

and 𝑀3. Since all transactions in a group file have the same gender and age-group,

these rows are dropped. The remaining dataset grouped by the patient identifiers and

 38

sorted by the date. Based on expert advice, ICD-9-CM codes of each transaction are

reduced to their category (first three characters). The reason for this is to reduce the

code to the most general part and not include too specific diagnoses. Duplicate or

invalid codes in a transaction are removed. For example, the transaction from Table

VIII with 𝑇𝐼𝐷 = 4 is reduced to the codes {465,780,465} and the duplicate category

code 465 is removed, which leaves the transaction code set {465,780}. Based on

expert advice, ICD-9-CM codes 460 (common cold), 760 to 779 (chapter “Certain

Conditions Originating In The Perinatal Period”), V01 to V91 (chapter

“Supplementary Classification Of Factors Influencing Health Status And Contact With

Health Services”) and E00 to E99 (chapter “Supplementary Classification Of External

Causes Of Injury And Poisoning”) are removed. This filter operations are performed

to remove the unreliable, inaccurate or non-relevant parts of the data. Empty

transactions are removed after the filter operations. The patient ID is used as the SID

of the corresponding sequence. These transformations result in a disease category

sequence dataset (see Table IX).

Complete
Transaction

Dataset
(.csv-File)

Group
Transaction

Datasets
(.csv-File)

0F.csv

0M.csv

9M.csv

Filter and
Transform

0F_SEQ.txt

MAIN.csv

Group
Disease

Sequence
Datasets
(.txt-File) Mining Tasks

0F_RESULT.txt

Mining Task
Results

(.txt-File)

9M_SEQ.txt 9M_RESULT.txt

Results Table

Results
Mapper

Figure 13. The data processing pipeline.

Based on expert advice, transactions are merged if their dates are less than two

weeks apart. This time gap was chosen to join disease codes, which usually belong to

the same treatment period. Duplicate category codes within the resulting transactions

are removed. For example, transactions shown in Table VIII with the 𝑇𝐼𝐷 one and

four, are recorded only one day apart and are therefore merged to {410,465,780}. Each

 39

disease category in the sequence is encoded with the corresponding chapter of the ICD-

9-CM codes, e.g., 465 corresponds to “Diseases Of The Respiratory System”. This

generalization was made intentionally to exploit the hierarchical concept of the ICD

encoding and reduce the number of distinct items. An enumeration is used to represent

each chapter. Duplicate enumerations within a transaction are removed. Sequences of

length less than three or less than two distinct enumerations are removed. For instance,

the disease category sequence with 𝑆𝐼𝐷 = 𝐾𝑇61521480 in the 𝑀3 dataset (see Table

VIII) does not have a valid encoded sequence, since the item 𝑉20 was filtered and only

two valid items remained. Items within a transaction are sorted according to their

ordinal values of the enumeration, e.g., “Diseases Of The Respiratory System”

corresponds to the ordinal seven of the disease chapter enumeration. To match the

SPMF format, the chapters are encoded as the corresponding ordinal values separated

by single space. The end of each transaction is encoded as " − 1" and the end of the

sequence is encoded as " − 2", i.e., the sequence with 𝑆𝐼𝐷 = 𝑃𝑉63270480 in the 𝐹0

dataset from Table IX would be encoded as "6 7 15 − 1 16 − 1 − 2".

Table IX. Example of the sequence dataset from Table VIII.

Gender-Age-Group

[F/M + 0-9]

SID

[Patient-ID]

Disease Category Sequence Encoded Sequence

[SPMF]

F0 PV63270480 〈{410}, {465, 780}, {944}〉 6 7 15 − 1 16 − 1 − 2

M3 KT61521480 〈{074, 466}〉

Each of the valid SPMF encoded disease sequences of a transaction gender-age-

group CSV-file is written as a line to a corresponding sequence txt-file. This data

transformation is performed by the system automatically when the application

deployed on the server or the user uploads new data. In the data view, the user can

select which sequence files are used as input for the mining algorithms. The output of

each successful mining task is a txt-file in SPMF format. Each line in the result file is

a frequent sequential pattern. At the end of each line the keyword "#𝑆𝑈𝑃: " followed

by an integer indicating the absolute support of the pattern as a number of sequences,

e.g. "4 2 − 1 5 − 1 − 2 #𝑆𝑈𝑃: 6" would be a frequent sequential patter consisting of

the itemsets {4, 2} followed by the itemset {5} and having the absolute support 𝜎 = 6.

 40

5.3 RELEVANT CLASSES

This section lists the most relevant classes and their dependencies. Low-level

details or code examples are not included, but non-trivial implementation issues and

concepts are explained.

AbstractAlgorithmTask Implements the concept of a mining task, which is inherited

by specific mining algorithms, e.g., BidePlusTask, SpamTask.

AlgorithmManager Starts when the servlet context is initialized. Uses an

ExecutorService as a thread pool for the AlgorithmRunnables.

AlgorithmRunnable Implements a Runnable to enclose a mining task as a separate

managed thread.

DataManager Starts when the servlet context is initialized. Loads all

datasets and references into memory to create the state of

the application.

DiagnosesGroupHelper Implements most of the ICD-9-CM encoding data

manipulations in the application, e.g., chapter

(DiagnosesGroup) or code (ICDCode) filter, get proper

description or name of the ICDCode, get the color to highlight

an ICDCode or DiagnosesGroup.

ICDLink Implements a concept, which is used to build a model of

patients’ disease sequences. The ICDLink is defined by a

source node, a target node, and a link value. Given a disease

category sequence of a patient, the ICDLinks are built of

ICDCodes appearing in sequential order. The value represents

the frequency of the two codes in the given sequence.

ICDSequence Implements the concept of a disease category sequence of a

patient. This class is used to compare itemsets or patients

and built an encoded sequence dataset. Further, this class is

used to analyze the patient disease trajectory to build an

ICDLink collection.

InverseSearchThread Implements a Thread, which uses the PatternScanner, to

perform an inverse search, which retrieves all patients, who

contain a specific frequent pattern, for all frequent patterns

in the ResultsTable.

PatternScanner Implements the concept of an inverse search, which

retrieves all patients, who contain a specific frequent

pattern. This subset is used to create ICDLinks and extract

the most frequent ICDCodes. This operation may be

 41

expensive in terms of memory and runtime. Therefore, it is

performed only once and the data is stored in JSON-files.

ResultsMapper The ResultsMapper collects the frequent patterns and the

corresponding support values of all result files in a single

ResultsTable collection, which is presented to the user in the

results view.

5.4 DEPLOYMENT AND MAINTENANCE

The Disease Pattern Miner is built and deployed on both local and remote

development environments. Both use the Apache Tomcat [63] servlet container

(version 9.0.12) to deploy the application as a Web service. The Tomcat server may

monitor metrics and runtime characteristics of the application. Additionally, a Jenkins

[64] server (version 2.138.2) is set up on the remote to support continuous integration

and delivery process for this project. In Jenkins, a pipeline is configured to trigger

whenever new code is pushed to the remote GitHub repository of the project. Jenkins

automatically pulls the most recent code from the remote repository, builds the

application with Maven, according to the pom-files specifications, and may execute

some tests. If the build is successful Jenkins deploys the application war-file to the

Tomcat server. This setup helps to reduce cost, time and risk of delivering changes and

allowing incremental updates to the application in production.

 42

6. RESULTS

This chapter presents the developed Disease Pattern Miner. This includes the

user interface of the Web pages as well as the results of the mining tasks and the

modeling of the frequent disease patterns.

Figure 14. Final implemented the interface of the dashboard view.

6.1 PATTERN MINING FRAMEWORK

The Disease Pattern Miner is developed as a monolithic application which is

deployed on a Tomcat server. The application is developed with modern, responsive

Web technologies. The user can access the frontend with any browser. As described

in Section 4.2, the application follows a minimalistic, consistent layout having a

header, navigation bar, main content section, and a footer. The navigation bar provides

internal links to six different views. In each view, the user can interact with the

application to identify and archive specific goals or make observations. For each view

screenshots of the final implemented interfaces are presented briefly in the following

section.

The dashboard, shown in Figure 14, is the index page of the Web application. In

this view, the user is presented a short description of the framework and three external

 43

links to the public GitHub repository, documentation and scientific publications

related to this project.

The implementation of the data view is shown in Figure 15. In this view, the user

can decide which datasets are used in the mining processes. By clicking the gender-

age-group files, they can be selected or unselected. In the top part, the user is given

two options to add a dataset to the application context. The first option is to upload a

new dataset as a single CSV-file matching the predefined format. The second option is

to download a zip-file from an external source, e.g., GoogleDrive. The archive may

contain already processed datasets, e.g., result files or inverse search files. This option

may be useful to share datasets which are processed by some other user.

Figure 15. Final implemented the interface of the data view.

Figure 16 shows the implementation of the algorithms view. The user can chose

from 15 sequence mining algorithms to create mining tasks, which are displayed as

rows in a table. The algorithms and constraints (see Section 2.2.4 and 2.4) have default

parameter values, which may be adjusted for each task. The user can start, pause or

cancel each mining task. The mining tasks are run as separate threads on the selected

dataset and produce a result. The table shows the current status of the algorithm, time

of creation, start and end, as well as the duration. Each task is run as a separate thread

in a managed thread pool.

 44

Figure 16. Final implemented the interface of the algorithms view.

6.2 SEQUENTIAL DISEASE PATTERNS

The Disease Pattern Miner automatically filters and converts the uploaded

dataset to gender-age-group files having encoded disease sequence information (see

Section 5.2). This sequence files of males and females in the age-groups zero to seven

are used in multiple mining tasks. The system finishes all tasks successfully and

produces result files with information about frequent patterns and the corresponding

support values. Additionally, the application logs statistical information regarding the

process duration.

6.2.1 Disease Patterns in Results-View

The application collects information from all result files in a single table which

is displayed in the results page of the application (see Figure 17). The table shows the

found frequent disease patterns as rows and the gender-age-groups as columns. The

cell entries of the table show the relative support of the pattern in the corresponding

subset. The patterns and the cells are highlighted with colors. All table entries have

tooltip information which is displayed on a mouse hover-event.

 45

Figure 17. Final implemented the interface of the results view.

The user can filter the table to reduce the number of displayed patterns to a

manageable size. The user can select from 11 different filter types, which can be

adjusted by changing different parameter values. If multiple filtering options are

selected, the filters are processed in order of the occurrence. The application

automatically updates the results table. The user can export and download the entries

of the filtered results table as a JSON-file.

Next to the sequential disease pattern, two icons are displayed. The search ()

icon indicates whether the inverse search (see Section 5.3) was already performed for

this pattern in all related gender-age-group datasets. The person () icon indicates

whether the t-Test is showing a significant difference between males and females when

comparing the corresponding relative support values.

Additional information regarding the disease sequence pattern in the proper

gender-age-groups dataset is displayed as a tooltip of a nonempty table cell. The tooltip

includes information about common codes (see Section 5.3) of this cell entry. The user

is also able to click the entry to go to the related disease pattern explorer view.

 46

6.2.2 Disease Patterns in Explorer-View

Given a frequent pattern the Disease Pattern Miner can perform an inverse search

to find the subset of patients showing the pattern in the corresponding dataset. The

application uses the disease category sequences of the patients in this subset to count

the frequencies of categories appearing in sequential order. The information is used to

build and display a hierarchical, bi-directional, interactive Sankey diagram (see

Section 5.1). This model is presented to the user in the explorer view. A screenshot of

the pattern explorer view interface is shown in Figure 18.

In the top part, the application displays the selected pattern, which is used for the

current Sankey model. The user can adjust the model by selecting the gender and scroll

through age-groups. The model can be exported as an image of the Sankey chart or as

a JSON-file.

Figure 18. Final implemented the interface of the explorer view.

The Sankey diagram is built of the 250 most frequent disease category links (see

Section 5.3). The nodes of the graph represent the different ICD-9-CM disease

categories and chapters. The size of the nodes and links give visual feedback about the

absolute support values, e.g., large links correspond to high support. The user can

move the mouse over the links and nodes to get a tooltip about the proper frequencies

and highlight the flow. The nodes may be dragged with the mouse to adjust their

position. If the node represents a chapter, it may be expanded to the child disease

categories. If the node represents a category, it may be collapsed to hide it in the

 47

diagram. Both operations may be reversed by clicking the corresponding node

collapser in the left-top corner of the chart.

Figure 19. Final implemented the interface of the performance view.

6.3 ALGORITHMS STATISTICS

To give additional feedback about the duration of the different mining tasks the

performance interface, shown in Figure 19, was implemented. The Disease Pattern

Miner uses data collected from log files to display the duration of different mining

algorithms in simple scatter plots with the Plotly library (see Section 5.1). The duration

is compared only to the minimal relative support threshold and the size of the dataset.

Note that it is not the intention of this thesis to evaluate the performance or state which

algorithm performs best. However, this information might help the user to choose

algorithms and parameter values for different mining tasks. It is also important to note

 48

that it is problematic to compare the algorithms with regard to the many different

parameters and dataset characteristics. Due to these differences, not all of the

algorithms’ performance values are displayed in the plots.

 49

7. EVALUATION AND DISCUSSION

In this chapter, a reflection of the presented technical solution is given. Further,

this chapter presents a stepwise scenario of using the implemented Disease Pattern

Miner. For each step, an example analysis of the observations is outlined.

7.1 ANALYSIS OF THE PATTERN MINING FRAMEWORK

Within the scope of this project, a framework for disease pattern mining was

designed and implemented. This section will discuss whether the application satisfies

the defined requirements (see Section 3.1).

The conceptual framework devised is based on a solid foundation of concepts

and algorithms for sequential pattern mining. The key motivation for the development

of this domain-specific application is to run many of the proposed algorithms to

discover valuable knowledge about frequent disease patterns and disease co-

occurrences in EHR datasets. The Disease Pattern Miner meets all statutory

requirements and conditions (see Section 3.1). The defined requirements are tested in

production by multiple users according to the workflow described in the mining

pipeline (see Section 3.2). The functionality was extended to not only find the frequent

disease patterns but to build an interactive model, which lets a data scientist explore

the disease trajectories. This model may provide valuable insights for further research

on disease-disease associations. The framework was published open-source under the

MIT License in a public GitHub repository [54].

The application was developed on Windows and later deployed to and hosted on

a remote Linux (Ubuntu) environment. The framework appeared the same, except for

performance differences which can be attributed to the fact of different capabilities of

the processor, RAM, and hard drive. After the implementation, the framework was in

production for more than a month to find and fix minor errors. Metrics and runtime

characteristics have been collected to show adequate functioning. The session

availability showed an average 98.8% per week with a total downtime of 60.48

minutes in the measured period. The downtime can be explained by the server

availability and maintenance of the project. The application reloaded the context

 50

successfully in all cases within less than a minute. Except for the inverse search, the

application does not show significant request or response delays.

The Disease Pattern Miner is divided into several views, which can be used by

the user to interact with the application. The views are built following a minimalistic

design allowing the user to identify the goals in each presented interface fast.

Nevertheless, to work with the data and different algorithms requires expert domain

knowledge. New data can be uploaded and included in the mining process but has to

match the predefined format. The framework does not support other formats or

connections to a database. The application can filter and convert the data to match

several different formats. Mining tasks with 15 different sequence mining algorithms

can be defined. All mining tasks are enclosed in separate threads and can be

parametrized. Prior knowledge to the selected datasets is required to adjust the

parameters to get the best possible performance and results. The feedback of the tasks

is limited to a status report. A result file with frequent patterns is produced if the mining

task is successful. The results are collected and presented to the user in a single table.

To provide better visual feedback the frequent disease patterns and the support values

are highlighted with colors. The user can apply 11 different filter options to find more

relevant disease patterns.

For each frequent pattern, the application can find a subset of patients and build

an interactive model of disease trajectories. The inverse search may be expensive in

terms of memory and runtime but is only performed once. The model is built with a

bi-directional, hierarchical Sankey diagram. Both, the results table and the Sankey

chart, can be exported as JSON-files. The model may be adjusted by the user to show

specific gender- and age-groups data. The diagram dynamically renders the new

positions of the model objects according to the disease links in the proper dataset. The

application does not support to save the state of the model in the application, but the

chart may be exported as an image.

The Disease Pattern Miner is developed as a Web application using the Java™

EE Specification API’s [47], e.g., Servlets, JSP. These server-side technologies are

used for Java application development and offer benefits for monolithic applications

based on the Model-View-Controller architecture. Nevertheless, there exist various

ways to develop a modern Web application. The modular architecture makes most of

the productive code reusable for future development. Dividing the application into a

 51

frontend and backend service, e.g., frameworks like Vue [65] and Express [66], might

offer a better separation between the application concepts. Further, to interact with

other applications the backend endpoints should be defined in a clear API, e.g., REST

or GraphQL. Container-based microservices (e.g., Docker [67]) may offer

opportunities to replace the thread-based implementation of the mining tasks.

7.2 ANALYSIS OF DISEASE PATTERNS

For demonstration and evaluation purposes a subset of interest was selected from

the complete dataset. This subset contains only patients who show at least one of the

following categories within their disease category sequence: migraine (code 346),

diabetes mellitus (codes 249 and 250), myocardial infarction (codes 410 and 412) or

chronic kidney disease (code 585). Detailed statistics of this subset of interest are

shown in Table X in Appendix A.

The dataset of interest was uploaded through the data interface (see Figure 15)

of the Disease Pattern Miner. After the upload was successful, the application divided

the dataset into gender-age-groups files. The data of age-groups eight and nine tends

to have less distinct patients and codes, while at the same time the maximum and

average length of the encoded sequences are high. This observation may be explained

by the fact, that chronic diseases such as heart disease and diabetes are common among

older adults. The encoded sequences of these groups show periodic patterns [68].

Mining periodic patterns is an own field in data mining. The introduced sequence

mining algorithms do not cover the concept of periodic pattern mining. Therefore these

groups are not selected for the mining tasks.

In the algorithms view, all 15 algorithms were set up for mining with different

parameters. Across all mining tasks: the relative support was set 0.1 or higher, the gap

constraint (see Section 2.2.4) was set to be two, the minimal sequence length was set

to be three and the maximum sequence length was set to be 10. All tasks have been

started independently and finished the mining successfully.

7.2.1 Analysis of the Result-View

The Disease Pattern Miner has automatically collected the data from all result

files. The mining tasks have been able to find 313558 frequent sequential patterns in

the subset of interest. All frequent patterns were loaded into the results view (see

Section 6.2.1) automatically.

 52

Figure 20. Example of the possible filter operations.

To demonstrate the filter operations and limit the results to a manageable size

two filters were created (shown in Figure 20). The Age-filter, for the groups zero to

three, is selected to display only the groups which have more than 150000 valid

encoded sequences (see Table X in Appendix A). The TopNGroups-filter is selected

to filter the frequent patterns for three patterns having the highest support value in each

age-gender-group. Figure 21 shows the pattern table in the results view after the two

filter operations are applied.

Figure 21. Example analysis in the Pattern-View.

In the following section, an example analysis is outlined. The two filter

operations reduced the number of frequent patterns to 13 with the highest support

values in each group. The TopNGroups-filter should show three patterns for each of

 53

the eight groups (3 patterns in each of 8 groups → 24 patterns). Therefore, it can be

concluded, that most of these patterns have the highest relative support in multiple age-

gender-groups (24 expected – 13 displayed → 11 patterns have highest support in

multiple groups). The heatmap on the right side is indicating that most entries show

high support. It can be observed that older groups tend to be highlighted somewhat

stronger. A reasonable explanation would be that older people become more

susceptible to different diseases. As shown in Table X in Appendix A, this observation

is also supported by the average and maximum length of the encoded sequences in

these groups, which are higher than in younger age-groups. On the left side, the

frequent sequential patterns are displayed. It can be observed that all patterns contain

the encoded chapter 7 (Diseases Of The Respiratory System), and most also contain

the encoded chapter 2 (Endocrine Nutritional And Metabolic Diseases And Immunity

Disorders), or 8 (Diseases Of The Digestive System). The reason for this is that these

chapters have a high prevalence in the subset of interest. The search () icon, next to

the sequential patterns, indicates that the inverse search (see Section 5.3) was

completed for all patterns. Further, the person () icon is indicating that the t-Test is

showing a significant difference between males and females in the three patterns. The

striped rows of the heatmap for those patterns support this observation.

Figure 22. Example cell hover-tooltip (group 4𝐹 of the pattern number 12).

For demonstration and evaluation purposes the 12th pattern “7 (Diseases Of The

Respiratory System) – 1 (TIME GAP) 9 (Diseases Of The Genitourinary System) –1

(TIME GAP) 15 (Symptoms Signs And Ill-Defined Conditions)” is examined more

closely. Note that the selected pattern shows a significant difference in gender–groups,

 54

whereas the support for this pattern in the female subsets is higher. To get more

information about the codes which result in this pattern the user may hover the mouse

over the cells in the heatmap. The tooltip from the hover-event in the group 4𝐹 is

displayed in Figure 22. In the top part of the tooltip, the user can see which mining

algorithm found this pattern, information about the absolute support values and the

result of the t-Test regarding the difference in gender. In the bottom part of the tooltip,

the most frequent ICD-9-CM category codes are listed. For instance, in this group, the

pattern could be observed in 102042 different patients and about 24% category codes

of the chapter 15 are built by code 780. The user can switch to the corresponding model

in the explorer view, by clicking the cell.

7.2.2 Analysis of the Explorer-View

In the explorer view, the user is presented a model of the disease trajectories,

which are built from the disease category sequences of the subset of patients containing

the pattern. This section will only outline an example in a female group since the

pattern was found significantly more often in the female datasets. The primary interest

might be to analyze the links between the three chapters of the selected pattern

(Diseases Of The Respiratory System, Diseases Of The Genitourinary System and

Symptoms Signs And Ill-Defined Conditions). Figure 23 shows the model of the

selected pattern in the group 4F. All chapter nodes which are not part of the selected

pattern are expanded, and all nodes which have no links between the chapter nodes of

the selected pattern are removed. The chapter nodes of the selected pattern may also

be expanded to see the child disease categories.

The exact support values of the links and nodes can be inspected in a tooltip. For

instance, Figure 24 shows the hover-event if the user wants to highlight the links to or

from the node Diseases Of The Respiratory System on the left or get its total support

values (Total In: 1193603, Total Out 1535786, Net Flow: 265261).

Using this model might help to conduct further research on disease associations.

This might include finding causes and effects of diseases in the graph, predicting

outcomes for individual patients, regrouping certain diseases or finding evidence for

disease cooccurrences. Nevertheless, before that, a structured evaluation of the model

is needed to validate the associations against already well-researched disease

comorbidities.

 55

Figure 23. Sankey diagram of the disease trajectories (pattern number 12, group 4𝐹).

 56

Figure 24. Hover-event for the node Diseases Of The Respiratory System.

 57

7.3 ALGORITHM RUNTIMES

Note that evaluating or comparing the mining algorithms it is not part of this

work, especially since most of them use different constraints and parameters. It could

be observed that all algorithms have an acceptable execution time if either the relative

support value is high or the dataset is small. However, the execution time and memory

of the tasks increases exponentially for both properties. Because of this, the tasks could

not complete successfully in most cases if the relative support was chosen low and the

dataset was too large.

7.4 LIMITATIONS

This section highlights some of the limitations and weaknesses of the Disease

Pattern Miner application reported in this thesis.

First and most important weakness is the limited dataset and the many

assumptions made during the data processing pipeline. The dataset is almost 20 years

old and missing relevant information. For example disease utilities, demographic

information like year of birth or the ethnicity, lab results, histological data or

information about death are not part of the data. The dataset has to be uploaded by the

user instead of establishing a connection to a production database. This might result in

corrupt, invalid or duplicate data. The mining is performed after converting the data

based on the hierarchy of the ICD-9-CM, which may be considered as a naive

approach. The mining process requires expert knowledge about the dataset and the

data mining methodology. The mining algorithms only include open source Java

implementation. Therefore some important algorithms are missing. In the current

application, only sequential pattern mining algorithms are implemented. The mining

does not support item or group specific thresholds or parameters.

Although the Disease Pattern Miner satisfies all defined requirements, the

monolithic architectural design is not well suited to separate the concepts of frontend

and well-defined backend endpoints. Web application technologies are rapidly

evolving and may offer great opportunities to improve the design and functionality of

the project reported in this thesis. The framework is missing a clear API definition to

interact with other applications. Also Unit-Testing most of the current modules is

required before deploying the application in production mode.

 58

Other limitations of the work presented in this thesis are some of the results

analysis and the model used for the disease trajectories. The property on which the

patterns are collected and sorted is the support. Alternative measures of interest, e.g.,

leverage, may have better properties when it comes to identifying essential patterns.

The found patterns have to be reviewed by medical data scientists. The Sankey

diagram is useful to represent the flow, but the model elements are re-rendered every

time the user changes the age- or gender-group, making it very difficult to determine

the effect of individual nodes or links. The model is showing information about the

sequential order of two nodes, but the disease trajectory as in the disease category

sequence of a patient is not represented.

 59

8. CONCLUSIONS AND FUTURE WORK

Within the scope of this project, a framework for disease pattern mining was

designed and implemented to utilize state-of-the-art sequential pattern mining

algorithms in a domain-specific Web application. An agile development process was

used to develop the Disease Pattern Miner in several stages. In the first stage, basic

scenarios and the need for such an application were defined and a requirements

analysis was performed (see Section 3.1). Based on the requirements, sequential

pattern mining algorithms and libraries have been reviewed and chosen. Further, based

on the software requirements specification, a module architecture of a Web application

(see Section 4.1) and user interface mock-ups (see Section 4.2) have been designed. In

the next stage, the Disease Pattern Miner was implemented (see Chapter 5) and the

first results of the mining have been reviewed with domain experts. Changes to the

requirements were made, and the functionality was extended to provide an interactive

model of the found patterns. The iterative review, maintenance, and improvements of

models and the user interface aided the development of the application to a stable

release version.

This work has successfully shown that sequential pattern mining algorithms can

be embedded in a disease associations data analysis framework. The application may

support medical data scientists and researchers to discover valuable knowledge about

disease co-occurrences. These insights may help to understand the correlations

between diseases or disease-groups, provide retrospective information on a patient

trajectory, support prospective therapy decisions, and give epistemological

information on diseases which are relevant in a specific gender- or age-groups.

The presented interactive model of patient disease trajectories, which is built

from a subset of patients having some frequent pattern, offers a novel approach to find,

explore and understand the disease associations. Together with the frequent disease

patterns, discovered by various sequence mining algorithms, this application enables

a variety of use cases. Nevertheless, a structured evaluation of the data and models is

needed.

Future work should separate the application concepts in a frontend and a backend

with well-defined endpoints ensuring better interoperability and accessibility. Further,

 60

the application should be extended with other mining methods and libraries, e.g., high-

utility mining or traditional itemset mining algorithms. Another important

improvement would be to extend the data models to include more complex information

and filtering options. The application should also be extended to support direct

connections to databases instead of using the file system storage.

 In conclusion, it could be shown that the data mining methods can help to

discover and understand disease associations in large electronic health record datasets.

Utilizing different pattern mining algorithms has the potential to change future

research on disease comorbidities and improve clinical treatment.

 61

BIBLIOGRAPHY

[1] D. Gligorijevic et al., “Large-Scale Discovery of Disease-Disease and Disease-

Gene Associations,” (eng), Scientific reports, vol. 6, p. 32404, 2016.

[2] M. Flores, G. Glusman, K. Brogaard, N. D. Price, and L. Hood, “P4 medicine:

how systems medicine will transform the healthcare sector and society,” (eng),

Personalized medicine, vol. 10, no. 6, pp. 565–576, 2013.

[3] C. C. Aggarwal, Data mining: The textbook. Cham, Heidelberg, New York,

Dordrecht, London: Springer, 2015.

[4] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas, “A

Survey of Sequential Pattern Mining,” 2017.

[5] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Data Engineering,

11th International Conference (ICDE '95), Taipei, Taiwan, Feb. 1995, pp. 3–

14.

[6] R. S. Rakesh Agrawal, “Fast algorithms for mining association rules,” pp. 487–

499, 1994.

[7] P. Fournier-Viger et al., “A survey of itemset mining,” WIREs Data Mining

Knowl Discov, vol. 7, no. 4, e1207, 2017.

[8] C. Chand, A. Thakkar, and A. Ganatra, “Sequential Pattern Mining : Survey

and Current Research Challenges,” 2012.

[9] S. Abbasghorbani and R. Tavoli, “Survey on sequential pattern mining

algorithms,” in Conference proceedings of 2015 2nd International Conference

on Knowledge-Based Engineering and Innovation (KBEI): Tehran, Iran, Nov.

5-6th, 2015, Tehran, Iran, 2015, pp. 1153–1164.

[10] M. J. Zaki, “Scalable algorithms for association mining,” IEEE Trans. Knowl.

Data Eng., vol. 12, no. 3, pp. 372–390, 2000.

[11] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate

generation,” SIGMOD Rec., vol. 29, no. 2, pp. 1–12, 2000.

[12] J. Han, J. Pei, and X. Yan, “Sequential Pattern Mining by Pattern-Growth:

Principles and Extensions*,” in Studies in Fuzziness and Soft Computing, vol.

180, Foundations and Advances in Data Mining, W. Chu and T. Y. Lin, Eds.,

Berlin Heidelberg: Springer-Verlag GmbH, 2005, pp. 183–220.

[13] W. Gan, C.-W. Lin, P. Fournier-Viger, H.-C. Chao, and P. S. Yu, “A Survey of

Parallel Sequential Pattern Mining,” undefined, 2018.

[14] W. Gan, J. C.-W. Lin, P. Fournier-Viger, H.-C. Chao, and P. S. Yu, “A Survey

of Parallel Sequential Pattern Mining,” May. 2018. [Online] Available:

http://arxiv.org/pdf/1805.10515v1.

[15] C. H. Mooney and J. F. Roddick, “Sequential pattern mining -- approaches and

algorithms,” ACM Comput. Surv., vol. 45, no. 2, pp. 1–39, 2013.

[16] J. Pei, J. Han, and W. Wang, “Constraint-based sequential pattern mining: the

pattern-growth methods,” J Intell Inf Syst, vol. 28, no. 2, pp. 133–160, 2007.

[17] M. Garofalakis, R. Rastogi, and K. Shim, “Mining sequential patterns with

regular expression constraints,” IEEE Trans. Knowl. Data Eng., vol. 14, no. 3,

pp. 530–552, 2002.

[18] H.-E. Chueh, “Mining Target-Oriented Sequential Patterns with Time-

Intervals,” undefined, 2010.

 62

[19] U. Yun and K. H. Ryu, “Approximate weighted frequent pattern mining

with/without noisy environments,” Knowledge-Based Systems, vol. 24, no. 1,

pp. 73–82, 2011.

[20] Helen Pinto, Helen Pinto, Simon Fraser University, “Multi-Dimensional

Sequential Pattern Mining,” 2001.

[21] N. T. Nguyen et al., Eds., Mining Frequent Itemsets from Multidimensional

Databases: Intelligent Information and Database Systems: Springer Berlin

Heidelberg, 2011.

[22] Y. Liu, J. LI, W.-k. Liao, A. Choudhary, and Y. SHI, “HIGH UTILITY

ITEMSETS MINING,” Int. J. Info. Tech. Dec. Mak., vol. 09, no. 06, pp. 905–

934, 2010.

[23] Y. Liu, W.-k. Liao, and A. Choudhary, “A Two-Phase Algorithm for Fast

Discovery of High Utility Itemsets,” in Lecture notes in computer science

Lecture notes in artificial intelligence, vol. 3518, Advances in knowledge

discovery and data mining: 9th Pacific-Asia conference, PAKDD 2005, Hanoi,

Vietnam, May 18 - 20, 2005 ; proceedings, T. B. Ho, Ed., Berlin: Springer,

2005, pp. 689–695.

[24] C. K.-S. Leung, “Uncertain Frequent Pattern Mining,” in Frequent pattern

mining, C. C. Aggarwal and J. Han, Eds., Cham: Springer, 2014, pp. 339–367.

[25] D. C. Anastasiu, J. Iverson, S. Smith, and G. Karypis, “Big Data Frequent

Pattern Mining,” in Frequent pattern mining, C. C. Aggarwal and J. Han, Eds.,

Cham: Springer, 2014, pp. 225–259.

[26] A. Grama, Introduction to parallel computing, 2nd ed. Harlow: Pearson, 2011.

[27] J. Dean and S. Ghemawat, “MapReduce,” Commun. ACM, vol. 53, no. 1, p. 72,

2010.

[28] S. G. Jeffrey Dean, MapReduce: simplified data processing on large clusters.

[29] P. Fournier-Viger et al., “The SPMF Open-Source Data Mining Library

Version 2,” in Lecture notes in computer science Lecture notes in artificial

intelligence, vol. 9853, Machine learning and knowledge discovery in

databases: European conference, ECML PKDD 2016, Riva del Garda, Italy,

September 19-23, 2016 : proceedings, P. Frasconi, N. Landwehr, G. Manco,

and J. Vreeken, Eds., Switzerland: Springer, 2016, pp. 36–40.

[30] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential PAttern mining using

a bitmap representation,” in Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data mining, Edmonton,

Alberta, Canada, 2002, p. 429.

[31] Xifeng Yan, Jiawei Han, Ramin Afshar, CloSpan: Mining Closed Sequential

Patterns in Large Datasets.

[32] P. Tzvetkov, X. Yan, and J. Han, “TSP: mining top-K closed sequential

patterns,” in Third IEEE International Conference on Data Mining:

Proceedings : ICDM 2003 : 19-22 November, 2003, Melbourne, Florida,

Melbourne, FL, USA, 2003, pp. 347–354.

[33] J. Wang and J. Han, BIDE: Efficient Mining of Frequent Closed Sequences:

IEEE Computer Society.

[34] A. Gomariz, M. Campos, R. Marin, and B. Goethals, “ClaSP: An Efficient

Algorithm for Mining Frequent Closed Sequences,” in Lecture Notes in

Computer Science / Lecture Notes in Artificial Intelligence, v.7818, Advances

in Knowledge Discovery and Data Mining: 17th Pacific-Asia Conference,

PAKDD 2013, Gold Coast, Australia, April 14-17, 2013, Proceedings, Part I,

 63

D. Hutchison, T. Kanade, and J. Kittler, Eds., Berlin/Heidelberg: Springer

Berlin Heidelberg, 2013, pp. 50–61.

[35] P. Fournier-Viger, C.-W. Wu, and V. S. Tseng, “Mining Maximal Sequential

Patterns without Candidate Maintenance,” in Lecture Notes in Computer

Science / Lecture Notes in Artificial Intelligence, v.8346, Advanced Data

Mining and Applications: 9th International Conference, ADMA 2013,

Hangzhou, China, December 14-16, 2013, Proceedings, Part I, M. Yao, W.

Wang, and O. Zaiane, Eds., Berlin/Heidelberg: Springer Berlin Heidelberg,

2013, pp. 169–180.

[36] I. Miliaraki, K. Berberich, R. Gemulla, and S. Zoupanos, “Mind the gap: large-

scale frequent sequence mining,” undefined, 2013.

[37] P. Fournier-Viger, A. Gomariz, T. Gueniche, E. Mwamikazi, and R. Thomas,

“TKS: Efficient Mining of Top-K Sequential Patterns,” in Lecture Notes in

Computer Science / Lecture Notes in Artificial Intelligence, v.8346, Advanced

Data Mining and Applications: 9th International Conference, ADMA 2013,

Hangzhou, China, December 14-16, 2013, Proceedings, Part I, M. Yao, W.

Wang, and O. Zaiane, Eds., Berlin/Heidelberg: Springer Berlin Heidelberg,

2013, pp. 109–120.

[38] V. S. Tseng et al., Eds., Fast Vertical Mining of Sequential Patterns Using Co-

occurrence Information: Advances in Knowledge Discovery and Data Mining:

Springer International Publishing, 2014.

[39] P. Fournier-Viger, C.-W. Wu, A. Gomariz, and V. S. Tseng, “VMSP: Efficient

Vertical Mining of Maximal Sequential Patterns,” in Lecture Notes in

Computer Science / Lecture Notes in Artificial Intelligence, v.8436, Advances

in Artificial Intelligence: 27th Canadian Conference on Artificial Intelligence,

Canadian AI 2014, Montréal, QC, Canada, May 6-9, 2014. Proceedings, D.

Hutchison, T. Kanade, and J. Kittler, Eds., Cham: Springer International

Publishing, 2014, pp. 83–94.

[40] F. Fumarola, P. F. Lanotte, M. Ceci, and D. Malerba, “CloFAST: closed

sequential pattern mining using sparse and vertical id-lists,” Knowl Inf Syst,

vol. 48, no. 2, pp. 429–463, 2016.

[41] K. Beedkar and R. Gemulla, “LASH: Large-Scale Sequence Mining with

Hierarchies,” undefined, 2015.

[42] F. Petitjean, T. Li, N. Tatti, and G. I. Webb, “Skopus: Mining top-k sequential

patterns under leverage,” Data Mining and Knowledge Discovery, vol. 30, no.

5, pp. 1086–1111, 2016.

[43] D. Tomar and S. Agarwal, “A survey on Data Mining approaches for

Healthcare,” IJBSBT, vol. 5, no. 5, pp. 241–266, 2013.

[44] R. Bhardwaj, A. R. Nambiar, and D. Dutta, “A Study of Machine Learning in

Healthcare,” in 2017 IEEE 41st Annual Computer Software and Applications

Conference: 4-8 July 2017, Torino, Italy : proceedings, Turin, 2017, pp. 236–

241.

[45] ICD-9-CM Diagnosis Codes - International Classification of Diseases -

Medical Diagnosis Codes. [Online] Available: https://www.findacode.com/icd-

9/icd-9-cm-diagnosis-codes.html. Accessed on: Jan. 22 2019.

[46] W.-Q. Wei et al., “Evaluating phecodes, clinical classification software, and

ICD-9-CM codes for phenome-wide association studies in the electronic health

record,” (eng), PloS one, vol. 12, no. 7, e0175508, 2017.

 64

[47] Java(TM) EE 7 Specification APIs. [Online] Available:

https://docs.oracle.com/javaee/7/api/overview-summary.html. Accessed on:

Mar. 05 2019.

[48] Bulma: Free, open source, & modern CSS framework based on Flexbox.

[Online] Available: https://bulma.io/. Accessed on: Mar. 05 2019.

[49] The jQuery Foundation, jQuery. [Online] Available: https://jquery.com/.

Accessed on: Mar. 05 2019.

[50] Webflow, Inc., Webflow. [Online] Available: https://webflow.com. Accessed

on: Mar. 06 2019.

[51] JetBrains, IntelliJ IDEA. [Online] Available: https://www.jetbrains.com/idea/.

Accessed on: Mar. 10 2019.

[52] Software Freedom Conservancy, Git. [Online] Available: https://git-scm.com/.

Accessed on: Mar. 10 2019.

[53] The Apache Software Foundation, Maven. [Online] Available:

https://maven.apache.org/. Accessed on: Mar. 10 2019.

[54] Vitaliy Ostapchuk, Disease Pattern Miner: vitaliy-ostapchuk93/disease-

pattern-miner. [Online] Available: https://github.com/vitaliy-

ostapchuk93/disease-pattern-miner. Accessed on: Mar. 10 2019.

[55] The Apache Software Foundation, Commons IO. [Online] Available:

https://commons.apache.org/proper/commons-io/. Accessed on: Mar. 10 2019.

[56] Google, Guava: Projects - opensource.google.com. [Online] Available:

https://opensource.google.com/projects/guava. Accessed on: Mar. 10 2019.

[57] StreamEx: amaembo/streamex. [Online] Available:

https://github.com/amaembo/streamex. Accessed on: Mar. 10 2019.

[58] Tippy.js: Vanilla JS Tooltip and Popover Library. [Online] Available:

https://atomiks.github.io/tippyjs/. Accessed on: Mar. 10 2019.

[59] Plotly. [Online] Available: https://plot.ly/. Accessed on: May 01 2019.

[60] M. Bostock, Data-Driven Documents - D3.js. [Online] Available:

https://d3js.org/. Accessed on: Mar. 10 2019.

[61] Mike Bostock, Sankey Diagram. [Online] Available:

https://bost.ocks.org/mike/sankey/. Accessed on: Mar. 10 2019.

[62] Neil Atkinson, Bi-directional hierarchical sankey diagram. [Online] Available:

http://bl.ocks.org/Neilos/584b9a5d44d5fe00f779. Accessed on: Mar. 10 2019.

[63] The Apache Software Foundation, Apache Tomcat. [Online] Available:

http://tomcat.apache.org/. Accessed on: Mar. 13 2019.

[64] Continuous Delivery Foundation, Jenkins. [Online] Available:

https://jenkins.io/. Accessed on: Mar. 13 2019.

[65] Vue.js. [Online] Available: https://vuejs.org/. Accessed on: Mar. 18 2019.

[66] Express: Node.js web application framework. [Online] Available:

https://expressjs.com/. Accessed on: Mar. 18 2019.

[67] Docker Inc., Docker: Enterprise Application Container Platform. [Online]

Available: https://www.docker.com/. Accessed on: Mar. 18 2019.

[68] P. Fournier-Viger et al., PFPM: Discovering Periodic Frequent Patterns with

Novel Periodicity Measures: IntechOpen. Available:

https://www.intechopen.com/citation-pdf-url/53394.

 65

APPENDICES

Appendix A

Table X. Statistics for the dataset of interest.

A
V

E
R

A
G

E
 S

E
Q

-

L
E

N
G

T
H

5
2
,3

2

5
1
,4

0

3
8
,2

3

4
3
,7

7

3
7
,6

3

5
0
,2

8

4
8
,6

1

5
5
,8

2

5
8
,1

4

6
6
,8

4

6
7
,9

6

8
0
,4

2

7
8
,3

1

8
6
,6

8

8
2
,9

6

8
6
,9

9

7
5
,3

5

7
6
,4

6

5
4
,6

8

5
2
,7

1

5
9
,4

2

6
5
,1

4

6
2
,2

8

M
A

X
 S

E
Q

-

L
E

N
G

T
H

1
4
5

1
5
0

1
7
2

1
7
9

1
8
1

1
9
3

2
1
6

2
1
5

2
7
4

2
3
6

2
7
1

2
4
2

2
5
0

2
5
8

2
5
7

2
6
1

2
7
0

2
2
4

1
8
6

1
9
4

2
2
2
,2

0

2
1
5
,2

0

2
1
8
,7

0

V
A

L
ID

S
E

Q
U

E
N

C
E

S

5
.5

7
5

4
.9

6
8

2
2
.5

2
7

3
0
.0

5
8

4
1
.1

2
7

6
9
.5

0
2

8
2
.9

7
2

1
0
7
.3

9
0

1
6
3
.7

1
2

1
8
3
.7

6
5

1
7
3
.3

0
6

2
0
6
.1

4
1

1
8
4
.4

8
2

2
2
2
.5

2
3

1
6
2
.4

3
2

1
5
0
.9

4
7

3
6
.0

0
0

3
9
.3

6
0

8
5
2

1
.2

7
6

8
7
2
.9

8
5

1
.0

1
5
.9

3
0

1
.8

8
8
.9

1
5

D
IS

T
IN

C
T

 I
C

D
-

C
O

D
E

S

7
4
3

7
4
8

9
3
0

1
.0

0
8

1
.0

4
2

1
.1

6
5

1
.1

4
0

1
.2

3
1

1
.2

1
0

1
.3

0
6

1
.2

4
3

1
.3

1
6

1
.2

9
6

1
.3

3
0

1
.2

8
6

1
.3

0
0

1
.1

3
4

1
.1

5
2

5
8
7

6
2
1

1
.3

6
9

1
.3

9
6

1
.6

6
0

D
IS

T
IN

C
T

P
A

T
IE

N
T

 I
D

S

5
.5

8
3

4
.9

7
6

2
2
.6

0
8

3
0
.1

1
4

4
1
.3

6
4

6
9
.5

9
1

8
3
.3

1
3

1
0
7
.5

1
7

1
6
4
.3

3
8

1
8
4
.0

4
9

1
7
3
.8

3
7

2
0
6
.3

7
3

1
8
4
.8

0
9

2
2
2
.7

5
8

1
6
2
.6

9
5

1
5
1
.1

8
3

3
6
.1

0
0

3
9
.5

1
2

8
6
6

1
.2

9
8

8
7
5
.5

1
3

1
.0

1
7
.3

7
1

1
.8

9
2
.8

8
4

F
IL

E
 S

IZ
E

1
0
 M

B

8
 M

B

2
2
 M

B

3
3
 M

B

4
1
 M

B

9
8
 M

B

1
1
0
 M

B

1
7
8
 M

B

2
5
4
 M

B

3
5
5
 M

B

3
2
6
 M

B

4
8
8
 M

B

4
6
2
 M

B

6
2
6
 M

B

5
0
0
 M

B

4
6
7
 M

B

1
0
2
 M

B

1
0
6
 M

B

2
 M

B

2
 M

B

1
.8

2
8
 G

B

2
.3

6
1
 G

B

4
.1

8
9
 G

B

T
R

A
N

S
A

C
T

IO
N

S

3
3
0
.4

7
2

2
7
4
.5

4
7

7
3
4
.3

9
6

1
.0

9
0
.2

1
1

1
.3

3
3
.1

0
4

3
.2

6
5
.2

0
6

3
.5

8
1
.8

0
1

5
.8

7
2
.9

8
4

8
.1

1
0
.3

4
8

1
1
.5

1
0
.8

3
2

1
0
.2

8
4
.2

9
2

1
5
.5

1
2
.9

1
2

1
4
.5

2
0
.2

0
4

1
9
.6

3
7
.0

9
9

1
5
.5

8
6
.0

8
5

1
4
.5

4
4
.9

4
0

3
.1

8
4
.0

4
0

3
.2

8
7
.9

2
3

4
8
.4

3
5

6
7
.6

1
0

5
7
.7

1
3
.1

7
7

7
5
.0

6
4
.2

6
4

1
3
2
.7

7
7
.4

4
1

G
E

N
D

E
R

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

M
A

L
E

F
E

M
A

L
E

A
L

L

A
G

E

0

1

2

3

4

5

6

7

8

9

0
-9

0
-9

0
-9

