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Abstract 

 
Quantitative assessment of Positron Emission Tomography (PET) imaging can be used 
for diagnosis and staging of tumors and monitoring of response in cancer treatment. In 
clinical practice, PET analysis is based on normalized indices such as those based on the 
Standardized Uptake Value (SUV). Although largely evaluated, these indices are 
considered quite unstable mainly because of the simplicity of their experimental 
protocol. Development and validation of more sophisticated methods for the purposes 
of clinical research require a common open platform that can be used both for 
prototyping and sharing of the analysis methods, and for their evaluation by clinical 
users. This work was motivated by the lack of such platform for longitudinal 
quantitative PET analysis.  

By following a prototype driven software development approach, an open source tool 
for quantitative analysis of tumor changes based on multi-study PET image data has 
been implemented. As a platform for this work, 3D Slicer 4, a free open source software 
application for medical image computing has been chosen. For the analysis and 
quantification of PET data, the implemented software tool guides the user through a 
series of workflow steps.  

In addition to the implementation of a guided workflow, the software was made 
extensible by integration of interfaces for the enhancement of segmentation and PET 
quantification algorithms. By offering extensibility, the PET analysis software tool was 
transformed into a platform suitable for prototyping and development of PET-specific 
segmentation and quantification methods. 

The accuracy, efficiency and usability of the platform were evaluated in 
reproducibility and usability studies. The results achieved in these studies demonstrate 
that the implemented longitudinal PET analysis software tool fulfills all requirements 
for the basic quantification of tumors in PET imaging and at the same time provides an 
efficient and easy to use workflow. Furthermore, it can function as a platform for 
prototyping of PET-specific segmentation and quantification methods, which in the 
future can be incorporated in the workflow. 
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1 Introduction 

Positron emission tomography (PET) has become an essential tool for the routine 
diagnosis, staging and monitoring of tumors in oncology. Although its underlying 
concept is relatively simple, more than 30 years of development and specialization were 
required until it finally found it’s way out of the research laboratories into clinical 
practice. Ever since, its importance within the field of clinical oncology has 
significantly increased, not least because of its possibility to indicate malicious cell 
growth, where other imaging modalities reach their limits. PET is a functional imaging 
technique with the focus on detection of physiological activities. However, the 
drawback of this technique is a modest anatomical imaging resolution. On the other 
hand, anatomical and morphological imaging techniques like X-ray Computed 
Tomography (CT) and Magnetic Resonance Imaging (MRI), which are widely used in 
oncology, offer high anatomical resolution but are not capable of imaging metabolic 
activity. As a consequence, efforts were made to combine PET and CT scanners in 
order to benefit from the advantages of both techniques and recently also the 
combination of PET and MRI has been brought to market maturity.   

In fact, PET is increasingly being used in cancer management but its potential 
regarding quantitative assessment remains widely underutilized in clinical practice, 
where diagnosis and staging of tumors are done either by visual inspection only or with 
additional help of radiology workstation software tools. Quantification of PET image 
data with these tools is almost exclusively done by application of the standardized 
uptake value (SUV) indices [1]. The prevalence of SUV is based on its simple 
experimental protocol, which allows quantification in a timely manner.  The stability 
and applicability of the SUV method in all its implementation forms has been discussed 
extensively in literature (e.g. [2], [3], [4], [5], [6], [7]). Despite this, to date there still 
does not exist a standardized protocol for the application of SUV.  Nonetheless, the 
benefits of using the SUV for quantification in clinical routine are currently bigger than 
its pitfalls [8]. More sophisticated methods for PET analysis based on dynamic imaging 
have also been developed in recent years [9], [10], [11]. However, these methods 
require prolonged times of successive scanning with the consequence of decrease in 
volume possible to scan. Considering these restrictions, said methods are not yet 
suitable for application in a clinical environment.  
With efficient but relatively unstable indices on the one hand and superior but too 
sophisticated methods on the other, research in PET quantification has to aim for the 
improvement of existing tools and also for the development of new ones. The aim is to 
develop more reliable and at the same time effective techniques, and always leverage 
new possibilities gained through technical progress. Thus, the development of new 
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quantification algorithms and platforms for prototyping of those is required. These 
platforms must function as a basis, offering PET imaging and analysis functionality, and 
provide the possibility to be extended with new algorithms. Regarding these 
requirements, commercial PET imaging systems are usually not appropriate for the 
purpose of research and development since they often are neither extendable nor do they 
support prototyping of new functionality. In contrast to commercial solutions, open-
source biomedical imaging software is especially developed for use in the academic 
environment. Mostly publicly funded and implemented by research groups from the 
field of biological or medical imaging, some of the freely available, open-source, non-
restrictive software frameworks have the capability to provide state-of-the-art medical 
image visualization. Such frameworks ideally come with a decent selection of basic 
image analysis tools and represent the fertile soil for the development and prototyping 
of new algorithms for biomedical applications. From the various free and open source 
software tools, available for medical image visualization and processing, we have 
chosen 3D Slicer1 as the software platform for our project. Besides its impressive 
visualization techniques of two, three and even four-dimensional (with time as the forth 
dimension) data, versatile functionalities are provided by over 100 different modules 
targeting almost every existing area in the field of medical image computing. With 
support of the Digital Imaging and Communications in Medicine (DICOM) format, 
advanced registration algorithms, easy to use segmentation tools and the possibility of 
chart plotting, 3D Slicer offers all the tools required for a promising implementation of 
our work.  

The objective of this project is the development and evaluation of an open source 
software tool for quantitative analysis of tumor changes from PET image data with 
special focus on an elaborated workflow, meeting usability expectations of expert but 
also non-expert users in the field of PET image analysis. An additional goal of this 
project is to realize the implementation in a way that promotes extendibility of the 
developed tool. This makes it suitable for other algorithm developers who are or will be 
involved in the development and prototyping of PET-specific segmentation or 
quantification methods. The following steps describe the activities that have been 
executed during the development of this project. 

First, a prototype driven requirements analysis was conducted in order to gather as 
many requirements as possible from potential users, developers but also clinical 
researchers. Second, the software architecture was designed with due regard to the 
optimal arrangement of the data structure in order to avoid complications in the 
subsequent implementation process and to streamline the same. In this project, 
particular relevance was paid to the usability of the resulting tool and a well-engineered 

 
                                                
1 3D Slicer: http://slicer.org/ 
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workflow. To achieve this goal, feedback from clinical and software engineering 
experts was collected throughout the whole development process in order to ensure that 
the orientation of the implementation is based on the requirements of the target user 
group. 
The presentation of the work done and results obtained in this project is given as 
follows. In the next chapter, a brief overview of the underlying physical principles and 
image acquisition techniques of PET is given. Then, fundamental image analysis 
methods and the software frameworks and libraries involved in this work are shortly 
described together with the concept of usability engineering and its evaluation methods. 
In the following chapter, the methods that were used to implement and validate the 
software tool are outlined. Interim results in form of software prototypes and final 
results from the validation studies are presented in the penultimate chapter. Finally, the 
last chapter discusses the result achieved in this project and provides an outlook on the 
potential of further development of this work.  



 

 

 
  



 

 

2 Fundamentals 

Ever since its early days, the significance of medical imaging in diagnosis and therapy 
has rapidly increased. Above all, this is due to the explosive development in quantity, 
quality and diversity of medical imaging data and the benefits coming from the 
continuous evolution of software and hardware used for analysis.   

In this chapter, the fundamental principles of PET imaging as well as the 
standardized protocol for medical imaging, fundamental image analysis methods, 
software toolkits and implementation guidelines used for implementation of the 
software in this project are presented. 

2.1 Positron Emission Tomography 

PET in clinical routine is a sophisticated procedure, which is performed by trained 
personnel following a precise schedule. In the following, an overview of the basic 
principles of radioactive tracing and positron emission and detection is presented. This 
overview is mainly based on the works of Jadvar [12], Lynch [13] and Martinez et al. 
[14]. Furthermore, current PET scanner configurations and methods for quantification 
of PET data are outlined.   

2.1.1 Radioactive Tracing 

In preparation for a PET scan, a radioactive labeled chemical compound (radioactive 
tracer) has to be produced in a cyclotron. Due to the relatively short radioactive half-life 
of radioisotopes suitable for PET imaging, the cyclotron is required to be located on 
site. The widest used radiotracer in current clinical routine is a fluorine-18 (18F) isotope 
labeled glucose (18F-FDG – Fluorodeoxyglucose). Subsequently to its production, this 
radioactive tracer is applied to the patient by intravenous injection. To ensure a 
sufficient distribution of the tracer inside the body before the image acquisition, an 
appropriate resting time is required but cannot take too long in regard to the radioactive 
decay of the radioisotope. The radioactive tracer 18F-FDG is taken up and 
phosphorylated by the human body in the same way as regular non-radioactive glucose. 
However, instead of being converted into energy or stored as glycogen, 18F-FDG is not 
undergoing any further reaction and remains trapped inside the cells where it gets 
accumulated. Given the fact that malignant tumor cells have a higher growth rate than 
benign ones, it is apparent that higher 18F-FDG uptake will take place in tumors. By 
using a PET scanner, radioactive decay of the radioisotopes trapped inside the human 
body can be registered. Thus, the location of tumors in PET images can be estimated 
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due to the fact that tumor cells generate a more intense signal when compared to healthy 
ones [13].   

2.1.2 Positron Emission 

Positrons are basically positively charged electrons (antielectrons), produced by 
unstable radioisotopes with an excess of protons. Based on their positron excess, 
positron-emitting radioisotopes are neutron-deficient and gain stability through the 
transmutation of a proton (P+) into a neutron (N). As a part of this process, a positron 
(e+) and an electron neutrino (v) are emitted while the excess energy (E) of the decay 
(kinetic energy) is shared between the positron and the neutrino in different amounts 
[14]: 

 
 𝑃! → 𝑁 + 𝑒! + 𝑣 + 𝐸 (2.1) 

 
Outside the nucleus, the positron is highly unstable and follows a jagged path while it 

is losing its kinetic energy by ionizing surrounding molecules when seeking to combine 
with an electron (e-). This combination results in a positronium ion which is very short 
lived because the antimatter positron and the electron annihilate each other (within 2 
nanoseconds) [13]. As a product of the annihilation process, two gamma rays (γ) are 
emitted in nearly opposite directions. Each one of these rays has an energy of 511 keV, 
resulting from the annihilation of the resting masses of the positron and the electron (E 
= mc2): 

 

Fig. 2.1:  Illustration of a radioisotope with positron excess emitting a neutrino 
(v) and a positron (e+), which after a short distance travelled, interacts 
with an electron (e-) resulting in an annihilation with emission of two 
gamma rays (γ). 

2.1.3 Coincidence Detection and Imaging 

The almost back-to-back emitted gamma rays (photons) from the positronium 
annihilation play the key role in PET. When those rays are detected at approximately 
the same time by two different detectors on opposite sides of a detector ring, the 
detectors are „in coincidence“ which means that the annihilation of the positronium 
must have taken place somewhere in between them on a so called line-of-response 
(LOR) [12]. Provided that the energy of the detected photons is above a certain lower 
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level of 350-400keV, they are analyzed by a coincidence-processing unit. Signals from 
opposite detectors that have been detected within a timespan of 4 – 12ns (coincidence 
window) are registered as a true coincidence event [14].  
 

 

Fig. 2.2:  PET scanner coincidence detection. Photons, emitted back-to-back 
during annihilation, are detected on opposite sides of the detector ring 
and classified as true coincidence event by the coincidence-processing 
unit. With the sum of all recorded coincidence events, a sinogram can 
be generated. From this sinogram, a volumetric image is then 
reconstructed in the end [15].  

However, besides true coincidence events, scattered and random coincidence events 
also exist and are registered too [12]. A scattered coincidence occurs if one or both of 
the photons undergo scattering in the patient’s body. In contrast to a non-scattered one, 
a scattered photon has less energy and changes the direction of its initial path. Assuming 
that such photons still have enough energy to be detected and these detections happen to 
be within the coincidence window, a coincidence event will be recorded although the 
line-of-response will be displaced. Random coincidence events occur when only a 
single annihilation photon reaches a detector while the other loses too much energy to 
be detected. Said case may occur due to attenuation and other scanner-related 
limitations. Assuming that two single photon detections occur within the coincidence 
window, these detections will be recorded as a true coincidence although they occurred 
independently. Recording of both scatter and random coincidence events results in loss 
of anatomical resolution in the resulting PET image. 
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Fig. 2.3: Different types of coincidence detections in a ring scanner. The black 
dot indicates the location of positron annihilation. From top left 
clockwise: a true coincidence, a scattered coincidence with one photon 
leaving its path, multiple coincidence with two positron annihilations 
and three counted events and a random coincidence with two 
annihilations and one counted event for each [16]. 

Based on the count rate of registered coincidences for each detector pair, line 
integrals can be modeled forming a sinogram (analogous to CT imaging) which then 
can be transformed into three dimensional (3D) image data using specialized image 
reconstruction algorithms [17]. Although image reconstruction is a crucial step in the 
generation of PET image data, it is beyond the scope of this work to provide further 
details in this respect. Eventually, the recorded radioactivity (Bq/ml) is stored as scalar 
values representing the different grayscale intensities of the reconstructed 3D image. 

2.1.4 Combined PET and CT 

Compared to CT images, PET images show a lower anatomical resolution, which can 
affect the correct localization of lesions and demarcation of their borders. Moreover, the 
contrast in CT imaging is based on the density of the tissue, while contrast in PET 
imaging results from metabolical activity in the tissue. As a consequence, combination 
of PET and CT imaging allows leverage of both imaging modalities’ advantages and 
can provide a tool for accurate localization of functional abnormalities. However, such 
combination requires a decent alignment of the PET and CT image data. In image 
processing, such alignment is called registration.  
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Image data is organized in a discrete coordinate system containing numerous 
elements. In two-dimensional (2D) images these elements are called pixels and in 3D 
image volumes they are called voxels. When acquired with standalone scanners, the 
coordinate systems of PET and CT image data will most certainly differ from each 
other. The reason for the difference can be manifold but the highest influence derives 
from change of patient position between the scans. It is practically almost impossible 
for a patient to maintain the exact same position when transferred from one scanner to 
the other.  

The goal of the registration process is to compensate these circumstances by using 
software algorithms to transform one image data set into the coordinate system of the 
other. Nevertheless, minimization of patient motion between scans is a key factor for a 
successful registration. To cope with this requirement, the combination of PET and CT 
scanners into a single device has been realized in the early 2000s [18]. In contrast to 
standalone PET and CT scanners, such combined scanners represent an effective 
approach for the acquisition of accurately registered images and are able to contribute to 
the reduction of overall scan time by up to 40% [14]. The reason for this significant 
improvement is based on the fact that the scans are acquired subsequently thus 
minimizing the possibility of movement. Moreover, the patient is moved on an 
automatic bed from one scanner to the other describing a linear, one-dimensional 
translation that can be registered very fast and accurate by software algorithms. 

2.1.5 Quantification of PET Data 

Diagnosis and staging of tumors in PET imaging can be achieved through visual 
inspection by an evaluator with expert knowledge in oncology and anatomy. This 
approach is known as qualitative analysis. While it is a first-choice method for 
identification of tumors, it is only suited to a limited extent when it comes to prediction 
of treatment efficacy and assessment of treatment [8]. For such applications, 
quantitative analysis is more appropriate since it provides the required objectivity. In the 
context of this work, quantification describes the expression of imaged radioactive 
tracer uptake in a measureable entity. 

Several sophisticated quantitative methods for PET quantification [9], [10], [11], 
[19], [20] have been presented over the past two decades. However, such methods have 
a complex protocol and require a prolonged data acquisition procedure. Because of that, 
these methods have not found their way into clinical routine yet. On the other hand, 
simpler and less exact quantification methods, so-called semi quantitative indices, for 
PET imagings are widely used in clinical practice today. The most accepted of those 
indices is the Standardized Uptake Value (SUV) [1] which is easily applicable and 
describes the ratio between the concentration of the injected radiotracer in a volume of 
interest (VOI) and the injected activity (corrected for physical decay) normalized by a 
normalization factor: 
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𝑆𝑈𝑉 =   
𝑟𝑎𝑑𝑖𝑜𝑡𝑟𝑎𝑐𝑒𝑟  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  (𝑘𝐵𝑞𝑚𝑙 )

𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  (𝑀𝐵𝑞)
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  𝑓𝑎𝑐𝑡𝑜𝑟

 (2.2) 

 
By using a normalization factor it is taken into account that the distribution of 

radioactive tracer in the human body is strongly influenced by physique. Commonly 
used normalization factors are body weight (bw), body surface area (bsm) and lean 
body mass (lbm). While for the computation of body weight normalized SUV only the 
patient’s body weight at the time of image acquisition is required (besides concentration 
and injected activity), the body surface area has to be determined based on weight and 
height of the patient by using approximation equations [6]. The lean body mass method 
requires estimation of the wrist, waist and hip circumferences in addition to the patient’s 
body weight [3].  

On the one hand, the simplicity of the SUV indices makes them suitable for use in 
clinical routine, while on the other hand this simplicity is causing instability of the 
results. A strong positive correlation between body weight normalized SUV and the 
body weight has been found [4], leading to overestimation of uptake in obese patients. 
Additionally, both the weight-independent body surface area normalized SUV and the 
lean body mass normalized SUV computation methods are also not specific enough to 
allow comparability in multi center studies. This is because neither the time interval 
between radiotracer injection and image acquisition nor scanner specific properties are 
taken into account. Moreover, the SUV indices are less suitable for quantification of 
PET data that was acquired using radioactive tracers with a distribution in the human 
body differing from that of 18F-FDG. Thus, the conclusion is that, for the quantification 
of PET imaging acquired with novel radioactive tracers, quantification methods with 
different kinetic properties will be required in the near future [8]. 
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2.2 The DICOM Standard 

In 1983, the American College of Radiology (ACR) and the National Electric 
Manufacturers Association (NEMA) formed a joint committee to develop a standard 
that would make communication in digital medical imaging independent of device 
manufacturer in order to facilitate the development and expansion of picture archiving 
and communication systems (PACS) [21]. Currently in its third version cycle, the 
standard for Digital Imaging and Communications in Medicine (DICOM) consists of 18 
parts (from 1-20, part 9 and 13 being retired) and had its last publicly available revision 
in 2011. It is free and can be obtained from the official DICOM home page2, which is 
maintained by the NEMA. 

In digital medical imaging, DICOM provides all the required tools for the 
diagnostically accurate representation and processing of collected data. By being an all-
encompassing data transfer, storage and display protocol, DICOM is well-suited to 
cover all functional aspects of digital medical imaging [22].  

The following two paragraphs give a brief overview of the structure of DICOM data 
and the hierarchy that is used to organize it. 

2.2.1 DICOM Information Model 

The main challenge for the DICOM standard is to provide an infrastructure capable of 
organizing the complex medical environment in a precise and device-independent way. 
By using its own lingo, the DICOM standard specifies a set of Information Object 
Definitions (IODs) which provide an abstract definition of real-world objects applicable 
to communication of digital medical information [23, p. 46]. In DICOM, all real-world 
data (patients, medical devices, images, etc.) are viewed as objects with respective 
attributes. For example, a patient IOD could consist of attributes like name, ID number, 
sex, age, size, weight, and so on. The transition from a real world patient to a patient 
IOD is illustrated in Fig. 2.4. IODs represent collections of attributes and in general 
contain as many of them as required to describe all clinically relevant information of a 
real world object [22]. The totality of these attributes form the DICOM Data Dictionary, 
which is listed in the sixth part of the standard [24]. The dictionary consists of over 
2000 data attributes and ensures the consistency in naming and processing of those. 
Once medical data is stored as DICOM Data Attribute it can be transmitted and 
processed by various DICOM conform devices. 

 
                                                
2 DICOM Standard: http://medical.nema.org 



 2  Fundamentals 

 

12 

 

Fig. 2.4: Representation of real world data as DICOM Information Object 
Definitions (IODs) [22]. 

 
Since clinical data comes in a wide variety of formats, the standard defines 27 basic 

data types called value representations (VRs) [25]. Each value representation is 
characterized by its two-character name, repertoire of allowed characters (for 
alphanumerical values) and the maximum or fixed length of its actual value in bytes. 
Depending on the type, data can be stored either as text or as binary representation. 
While the text format is well suited for names, dates and other character strings, the 
binary format is the first choice when it comes to encoding of single numerical values or 
sequences, as is the case for image pixels.  

Although this paragraph only provides a very brief overview of the DICOM 
information model, one can easily understand the enormous potential it bears for precise 
modeling of real world medical objects and the standardized exchange of captured data.  

2.2.2 DICOM Information Hierarchy 

In the DICOM standard, organization of the numerous attributes from the data 
dictionary is realized with a four level DICOM information hierarchy. From top to 
bottom these levels are Patient, Study, Series and Image (see Fig. 2.5). Each parent node 
in the hierarchy can have one or multiple child nodes. For example, a patient may have 
multiple studies when he has to undergo follow-up imaging for assessment of treatment 
response. A study in turn may consist of one or more image series. The latter is the case 
for multi-modality imaging techniques like PET/CT, in which image series from both 
modalities are captured during one study. Eventually, each image series may also 
contain more than one image.  

In the implementation of the hierarchy, a key-level ID is assigned to each level. At 
the Patient level, the “Patient ID” is used. It usually has the objective to identify a 
patient uniquely in the system of an institution. On the level below, each study is 
assigned a unique identifier called (UID) the “Study Instance UID”. The same applies 
for the Series level where “Series Instance UIDs” are used to identify individual series. 
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At the bottom level, each image has its own “SOP Instance UID” [22]. All of the above 
mentioned unique identifiers are mandatory for any type of imaging with DICOM 
conform devices. When properly used, they can significantly improve data 
identification and facilitate hierarchical data searches, retrievals and transactions. 

 
 

 

Fig. 2.5:  Four-leveled DICOM Information Hierarchy with key elements (UIDs) 
for identification of each level [22]. 
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2.3 Medical Image Analysis Techniques 

In a general sense, the purpose of this work is to support the analysis of medical images. 
However, medical image analysis describes a broad field of numerous methods, 
reaching from rather universal ones, suitable for application in common use cases, to 
those designed for highly specific tasks. In view of this fact, the following sections 
provide a brief overview of some medical image analysis techniques used for the 
realization of this work. 

2.3.1 Image Data Visualization 

As a first step in medical image analysis, the binary stored image data has to be 
presented in a way that is comprehensible for the examiner. For 2D image data, medical 
imaging software follows the same principle as any software capable of displaying 
images. Thus, the intensity values of the image pixels, stored as binary values in the file, 
are displayed in a pixel grid on the monitor according to their order. Presentation 
possibilities for 3D image data (consisting of a series of 2D image slices) are twofold. 
One solution is to display its 2D images next to one another in a grid and in a 
consecutive order similar to printouts of 3D image data. The second solution is based on 
interaction of the examiner who has to navigate through the individual 2D image slices 
of the 3D image data and only the selected image is displayed at a time. 
 

 

Fig. 2.6:  Visualization of CT head data slices on axial (red), sagittal (yellow) and 
coronal (green) planes. The slice intersections are illustrated by the 
colored crosshairs. 

A characteristic of 3D image data visualization is the possibility to display it on three 
different planes that are perpendicular to each other. In medical imaging applications 
these planes derive from the anatomical coordinate system. The axial plane separates 
the head from the feet while the sagittal plane separates left from right and the coronal 
plane separates front from back. Normally one of those planes corresponds to the 
acquisition plane (e.g. CT images are always acquired axially), so its visualized image 
data derives directly from the image file. However, the specific 2D image representation 
on the other two planes has to be calculated from the different 2D image slices before it 
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can be visualized. An example of how 3D image data is visualized on axial, sagittal and 
coronal planes is shown in Fig. 2.6. 

2.3.2 Volume Rendering 

In the recent years, volume rendering has become a very popular visualization technique 
for medical image data. On the one hand, this is due to the continuous improvement of 
computer hardware and especially graphics adapters. On the other hand, it is also its 
ability to display a discretely sampled 3D grayscale volume as a colorful, shiny and 
more anatomical object what makes volume rendering so valuable. Once started as an 
experimental technique in medical imaging, volume rendering has developed into a 
useful tool for clinical practice [26]. Its fields of applications are manifold as it can be 
used for noninvasive coronary imaging [27] as well as for surgery planning for living 
liver donation [28] and many more. A volume rendering projection from abdominal CT 
image data is shown in Fig. 2.7. 

There exist several methods for obtaining a volume rendered 2D projection of a 3D 
data set. The most straightforward is called “ray casting”. This method is also used in 
this work for volume rendering of 3D PET image data. The basic principle behind ray 
casting is to determine the value of each pixel in the projection by sending a ray through 
the pixel into the scene and then evaluate the data encountered along the ray using a 
specific function (ray function) in order to compute the resulting pixel value [29]. For 
colored 3D volume rendering, an additional color transfer function is applied to estimate 
the color of the computed pixel values.  
 

 

Fig. 2.7:  Colored ray-cast volume rendering of the abdominal area computed 
from 3D CT image data. 

In the case of volume rendering of 3D medical imaging, the scene consists of 2D 
image data slices representing a 3D image and the data encountered along the way are 
the scalar values of the voxels, which are used for computation in the ray function.  
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Volume rendering computation is a highly complex process and can be specialized 
by far more parameters than presented above. However, explanation of those is far 
beyond the scope of this basic introduction. 

2.3.3 Registration 

In medical imaging, registration describes the determination of a geometrical 
transformation which is able to align points from one image data set of an anatomical 
region of the body with corresponding points from another image data set of that same 
region.  As already explained in section 2.1.4, these image data sets will most certainly 
differ from one another when not acquired subsequently with a single device. 
Differences can be due to variations in patient positioning, changes of patient anatomy 
(weight-loss, differently filled bladder, respiration, etc.) or varying acquisition settings 
of the scanning devices (e.g. CT is always acquired in the axial plane while the 
orientation of acquisition in MRI is arbitrary). However, for an accurate assessment of 
changes between different single-modality image data, or a precise overlay of images 
from different modalities, an appropriate alignment of those is worth striving for.  

In general, image registration methods can be classified into three categories. Point-
based methods work with a priori identification of corresponding point pairs in both 
images.  Such points are called fiducials and are placed either at unique anatomical 
landmarks or are provided by artificial markers that have been implanted before 
acquisition of the images. When the required amount of fiducial pairs has been 
identified in both images (min. 3 pairs for 3D images), the registration method can 
estimate the geometric transformation that provides the best alignment.  Surface-based 
methods use surface boundaries of 3D anatomical objects to determine corresponding 
surfaces in different images and calculate transforms for appropriate alignment. Finally, 
intensity-based methods estimate the highest similarity of two different images based on 
their voxel values alone. In the simplest form, an intensity-based registration method is 
iteratively optimizing a registration transform based on a similarity measure. 

Registration transforms calculated by registration methods can be divided into two 
main categories. On the one hand, rigid transforms are geometrical transformations that 
preserve all distances, straightness of lines, planarity of surfaces and nonzero angles 
between straight lines (rigid transformations include translation, rotation and reflection 
and combination of those). On the other hand, non-rigid transforms include scaling, 
affine, projective, perspective and curved transformations [30].  

2.3.4 Segmentation 

Segmentation in medical imaging describes the process of partitioning an image into 
contentual coherent segments by classification of pixels/voxels according to specific 
criteria of homogeneity. In general, such segments correspond to different types of 
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tissues, organs or other task-related structures of interest. For classification, labels are 
assigned to each pixel/voxel of an image. Labels holding the same value classify a 
certain segment. For medical image analysis, segmentation is a useful technique since it 
allows the estimation of surface and volume of certain structures and can be used for 
generation of 3D surface models of the segmented objects, as shown in Fig. 2.8. 

There are different approaches to segmentation, which in general can be 
characterized as manual, semi-automatic and automatic segmentation. An operator with 
expert knowledge in anatomy can perform manual segmentation by manually labeling 
the images. Hereto, manual segmentation tools, similar to the different shape and free 
hand painting tools in drawing software, can be used to apply the labels to the image 
data. In semi-automatic segmentation, software algorithms are used for the 
segmentation process but as the name of the method suggests, they require human 
interaction in order to perform correctly. In most cases, a starting point or region inside 
the object to be segmented has to be seeded or roughly outline so that the algorithm can 
iteratively refine the segmentation. Automatic segmentation methods are designed to 
perform without human interaction. They mostly rely on automatic contour and shape 
detection and use parameterized shape templates which are deformed to match the 
object to be segmented in the image [31], [32].  

 

 

Fig. 2.8:  Segmentation in MITK 3M33: MRI head data with tumor (a);  
segmentation and volume assessment of tumor (b); 3D triangulated 
surface model of the segmented tumor (c). 

Although a myriad of different segmentation methods and algorithms have been 
developed in the recent past, there is no single approach that can generally solve the 
problem of segmentation for the variety of existing imaging modalities. However, the 
most effective algorithms are obtained by customized combination of different 
components. By tuning the parameters of these components for the characteristics of the 
respective modality and features of the anatomical structure quite decent results can be 
obtained [33].   
 
                                                
3 MITK 3M3: http://mint-medical.de/productssolutions/mitk3m3/mitk3m3 
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2.4 The NA-MIC Kit 

The National Alliance of Medical Image Computing (NA-MIC) is a multi institutional 
alliance in the United States, created with the objective for the implementation of an 
open-source infrastructure for the development and application of advanced imaging 
technologies for interdisciplinary research in the field of biomedical imaging [34]. The 
NA-MIC Kit4 provides well-developed tools for algorithm developers, software 
engineers, and application domain scientists. These tools can be categorized into 
programming toolkits, end-user application software and system infrastructure [35] (see 
Fig. 2.9). 

 

Fig. 2.9:  NA-MIC-Kit software overview [36]. 

The majority of the toolkits used in this projects are elements of the NA-MIC Kit, 
while all others are external packages provided by the open-source community, 
meaning that the resulting software from this project will also be able to fulfill the open-
source philosophy of the NA-MIC.      

In the following, an introduction of the NA-MIC programming toolkits and the end 
user application software used in this project is presented. 

 
                                                
4 NA-MIC Kit: http://na-mic.org/Wiki/index.php/NA-MIC-Kit 
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2.4.1 Common Toolkit 

The Common Toolkit (CTK)5 is an open-source library for biomedical image 
computing, which in the words of its developers is: „developed with the objective to 
provide support code for medical image analysis, surgical navigation and other related 
projects“ [37]. Besides application-level DICOM support and specialized graphical user 
interface (GUI) widgets6, CTK also offers a plugin framework and an automatic testing 
framework for the development of new software applications.  

2.4.2 Visualization Toolkit 

The Visualization Toolkit (VTK)7 is an open-source, cross-platform development 
platform for 3D computer graphics, image processing and visualization [29]. Besides 
basic processing capabilities for image, surface and mesh-data, its main purpose is the 
visualization of 3D image data using basic and advanced visualization algorithms.  

VTK’s class library is implemented in C++ but also includes interfaces for 
automated wrapping techniques, thus it is also accessible from interpreted programming 
languages like Tcl, Pyhton and Java. The main characteristic of VTK is its event-driven 
architecture, in which the program flow is determined by the occurrence of events. 
Based on its sophisticated architecture, robust implementation and advanced image 
processing and visualization functionalities, VTK is being used in several bio-imaging 
software applications and is the basis of 3D Slicer, the software platform used in this 
project.  

2.4.3 Insight Segmentation and Registration Toolkit 

The Insight Segmentation and Registration Toolkit (ITK)8 is an open-source, cross-
platform development framework well-suited for medical imaging related tasks [33]. It 
provides algorithms especially for segmentation and registration of multidimensional 
image data and serves as a platform for the development of new algorithms in image 
analysis. 

ITK is implemented in C++ with high emphasis on a generic programming style 
using C++ template code. Since the main advantage of generic code is that its 
functionality can be adapted to more than one data type, high modularity of the code 
and high reusability are ensured. Due to the high modularity, connections of several 

 
                                                
5 CTK: Common Toolkit, http://commontk.org 
6 Widget: Reusable element of a GUI 
7 VTK: Visualization Toolkit, http://www.vtk.org 
8 ITK: Insight Segmentation and Registration Toolkit, http://www.itk.org 
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ITK components can be composed to form sophisticated pipelines for the processing of 
complex image analysis algorithms.  

2.4.4 Qt Libraries 

The Qt libraries derive from an open-source, cross-platform application and user 
interface development framework. With more than 800 classes [38] written in C++, this 
framework provides an enormous breadth of functionalities suited for almost any 
conceivable task in software development. One of the most important characteristics of 
Qt is the fact that it makes use of a special code generator. It is included in the 
framework and called the Meta Object Compiler (moc) [39]. This generator is used for 
realization of Qt’s signal and slot mechanism [40]. Hereby, a simple implementation of 
the Observer design pattern can be realized. Qt objects have the capability to emit 
specific Qt signals upon certain events (e.g. when a button is clicked). Then, other Qt 
objects with slot methods can receive these signals. Using the signal and slot construct 
helps to create a powerful, type-safe and flexible communication structure for the 
graphical user interface of an application. 

2.4.5 3D Slicer 

Currently in its forth version cycle, 3D Slicer (further referred to as Slicer) represents 
the end-user platform of the NA-MIC Kit. Like the other components, it is a free, open-
source and cross-platform software package. Slicer’s binary installer packages for 
Windows, Mac OSX and Linux platforms are available for download as well as its 
source-code, targeting developers and compilation on other systems like Oracle’s 
Solaris.  

DICOM standard [41] support, VTK based visualization possibilities for two, three 
and four dimensional image data, versatile processing and  multimodal analysis 
functionalities and a streamlined graphical user interface (GUI) form Slicer into a 
powerful tool for medical image visualization and analysis while keeping the 
requirements for its operation so low that even a nontechnical user is able to easily 
operate the software. 

The architectural concept of Slicer 4 describes a layer-based modular approach (see 
Fig. 2.10). The lowest layer contains platform specific hardware and OpenGL drivers 
for window management and rendering functionality provided by the host system. One 
level above, programming and scripting languages together with toolkit libraries 
provide higher-level functionality and abstraction for the upper level application and its 
extensions.  

Regarding the application itself, Slicer’s components can be categorized into the 
application core, Slicer modules and Slicer extensions. The core implements the user 
interface, data input and output functionalities and provides plug-in interfaces [42]. 
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Modules represent the plug-ins for those interfaces. Being dependent on the application 
core, the modules’ objective is enhancement of the core functionalities. In contrast to 
the modules, which are part of the application bundle, extensions are not part of the 
application’s distribution. They function as external modules that can be integrated into 
the application „on-demand“. 

 

 

Fig. 2.10: System architecture and external library dependencies of Slicer 4 [42]. 

The core of Slicer 4 and the majority of the modules are implemented in C++. Due to 
support of the scripting language Python9, so-called “scripted” modules have become a 
promising alternative to modules written in C++. Their implementation is in many cases 
more time-effective while drawbacks in computing performance are negligible. The 
classes implementing the application core follow the Model View Controller (MVC) 
design pattern, which requires a separation of the Model (data), View (GUI) and 
Controller (logic). Communication between those three components takes place either 
through direct access (Controller and View have access to Model) or through event 
handling mechanisms (Controller and View react to changes in Model), which are 
implemented following the Observer design pattern.  

Data representation and organization in the Model is based on the Medical Reality 
Modeling Language (MRML) library which provides application programming 
interfaces (APIs) for the management of medical image data types, organization of 
those in a tree structure and serialization in an XML-based data format, which is 
suitable for exchange between different systems. Apart from the MRMLScene, which 
represents the root of the tree structure, objects from the MRML library are referred to 
as “nodes” since they all derive from the base class MRMLNode. 

In Slicer 4, the GUI implementation is based on functionality provided by the Qt 
toolkit libraries10 and on GUI widgets specialized for bio-medical imaging tasks, 
available from the CTK library. The processing functionality in 3D Slicer is 
 
                                                
9 Python Programming Language: http://python.org 
10 Qt: http://qt.digia.com 
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encapsulated in the logic, where computation with data from the MRMLScene is 
performed. Changes of the data structure in turn induce updates of the GUI elements 
presenting the data.  

The ongoing maintenance and development of 3D Slicer is carried out by a 
community of more than 80 authorized developers worldwide [42] and supported by a 
user community that can report issues on open mailing lists or bug tracking systems. In 
addition to that, the stability of the software is tested on a daily basis for a variety of 
platforms. Results of these tests are summarized and reported online11. 

In the remainder of this topic an overview of the Slicer modules used for the 
implementation of this project is given. 

2.4.5.1 DICOM Module 

Introduced with Slicer 4, the DICOM module12 represents the main user interface for 
import of DICOM data into the application. Imported DICOM data, either from disk or 
queried from a Picture Archiving and Communication System (PACS), is stored in an 
SQLite13 based local database on the application’s host platform. The easy to use 
DICOM browser GUI provides selection functionality and offers thumbnail previews of 
the available data sets. Moreover, the module is supporting extension through plug-ins 
which allows developers to implement new algorithms for customized DICOM data 
import (e.g. simultaneous loading of coherent PET and CT datasets).  

2.4.5.2 PET SUV Image Maker Module 

Belonging to the category of quantitative modules, the PET SUV Image Maker module 
is based on the Standard Uptake Value Computation module14. It provides functionality 
for the SUV based normalization of PET image volumes. Besides the captured 
radioactivity values stored in the pixel data of the image volume, additional information 
from the PET DICOM files is also required. When executed, the SUVbw value for each 
voxel from the original image is computed and stored in the respective voxel of the 
output image volume. 

 
                                                
11 Slicer CDash project: http://slicer.cdash.org 
12 DICOM Module: http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/DICOM 
13 SQLite: http://sqlite.org/ 
14 SUV Computation Module: 

http://slicer.org/slicerWiki/index.php/Documentation/4.0/Modules/PETStandardUptakeValueComputation 
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2.4.5.3 Volumes Module 

Changing the appearance of volumetric image data in 3D Slicer requires functionalities 
from the Volumes module15. Besides the selection from a vast range of predefined 
lookup tables, modification of Window/Level settings as well as threshold functionality 
are available. Adjustment of image data plays an important role in PET/CT fusion 
imaging where application of a suitable colored lookup table to the PET image and task 
appropriate Window/Level settings can have a remarkable impact on the appearance of 
the fusion. 

2.4.5.4 Volume Rendering Module 

Fully interactive 3D visualization of volumetric image data can be initialized and 
adjusted using the Volume Rendering module16. As already mentioned in section 2.3.2, 
3D volume rendering is a sophisticated technique. On the one hand it provides versatile 
visualization possibilities and on the one hand it requires high computational 
performance. For that reason, proper adjustment of the numerous parameters, involved 
in volume rendering computation, is very important in order to obtain adequate 
performance while maintaining reasonable hardware requirements. Considering these 
facts, the Volume Rendering module offers, amongst others, the selection of different 
CPU or GPU based volume-rendering techniques, interactive limitation of the rendered 
volume and various opacity and color mapping settings. Due to these possibilities, 
advanced volume rendering of complex 3D structures can be made available even on 
non high-end computation platforms. 

2.4.5.5 Editor Module 

A variety of tools for manual or semi-automatic segmentation can be found in Slicer’s 
Editor module17. The selection ranges from simple voxel based painting tools, over 
more advanced dilation and erosion effects, right up to sophisticated segmentation 
algorithms like the GrowCut [43]. Segmentations generated with the Editor module are 
stored in so-called label map volumes, which then can be used for postprocessing like 
generation of 3D triangulated surface models or quantitative analysis. Similar to the 
DICOM module, the architecture of the Editor module also supports extension by plug-
ins. Developers can implement their own segmentation algorithms and easily integrate 
them for validation. 

 
                                                
15 Volumes Module: http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/Volumes 
16 Volume Rendering Module: 

http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/VolumeRendering 
17 Editor Module: http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/Editor 
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2.4.5.6 Model Maker Module 

As mentioned above, segmented image data can be used to generate 3D triangulated 
surface models, wherefore the functionality of the Model Maker module18 is required. 
Models, created with the Model Maker, can be displayed simultaneously with 3D 
volume rendered image data. This functionality allows advanced visualization of 
segmented volumes in an anatomical context. 

2.4.5.7 Label Statistics Module 

Label map volumes storing segmentation results can be used not only for surface model 
generation, but also for calculation of statistics for the volumes classified by the labels. 
In Slicer, the Label Statistics module19 provides such functionality. Currently supported 
statistics are, the total amount of voxels in a segmented volume, its volumetric extent in 
mm3 or cubic centimeters and the minimum, maximum, mean and standard deviation of 
the segmented voxel gray scale intensities. Moreover, the possibility of plotting these 
statistics by using Slicer’s charting functionality or exporting them in a text file is also 
provided. 

2.5 Usability Engineering 

The increasing importance of computers in everyday life came along with increasing 
requirement of human-computer interaction. Study of such interaction is a main 
discipline in the scientific field of usability engineering, which is concerned with the 
development of human-computer interfaces with high usability. In general, usability of 
a hardware or software system refers to an effective and efficient accomplishment of 
tasks, performed with human interaction. Nielsen [44], one of the major usability 
engineering researchers named five attributes which can be regarded as quality 
components of usability [45]: 

1. Learnability:  How easy it is for new users to accomplish basic tasks the first 
time they encounter a new system? 

 
2. Efficiency:  Once users have learned the system, how quickly can they perform 

tasks? 
 

 
                                                
18 ModelMaker Module: http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/ModelMaker 
19 Label Statistics module: 

http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/LabelStatistics 
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3. Memorability: When users return to the system after a period of not using it, 
how easily can they reestablish proficiency? 

 
4. Errors: How many errors do users make, how severe are these errors, and how 

easily can they recover from the errors? 
 
5. Satisfaction: How pleasant is it to use system? 

 
2.5.1 Biomedical Software Usability 

Medical imaging has become the backbone for diagnosis in many medical disciplines 
and modern medicine cannot exist without it. The development from simple x-ray 
scanners, producing single images per scan, to sophisticated imaging modalities like 
CT, MRI, PET and others, which usually generate large amounts of digital images, has 
brought along the necessity for systems to post process those images. There are two 
main user groups for medical image analysis systems. On the one hand, radiologists and 
specialized medical personnel use commercial analysis workstation as approved clinical 
devices for diagnosis and staging of diseases and assessment of treatment response. 
Researchers, however, have different objectives and require more flexible solutions than 
the commercial ones. For that reason, numerous algorithms and several software 
packages for the visualization and analysis of medical image data have been 
implemented by academic groups and in many cases made freely available for research, 
private and sometimes even commercial use. While users of commercial systems are 
trained for the correct usage of the installed software, private users and researchers not 
involved in the development of the software often have to learn the correct usage by 
themselves. Furthermore, software created by research groups is often used only for 
their own work, and often no efforts are undertaken to share their software with other 
research groups. This leads to redundant efforts when other groups intend to implement 
similar or identical algorithms. To avoid this redundancy and the waste of effort, 
academic software developers should always aim for the implementation of software in 
such a manner that it is also usable for people outside their research group. To achieve 
this goal, certain criteria have to be met. Carpenter et al. [46] have defined key criteria 
for development of bio-imaging software, which of course can also be applied to 
medical imaging software, not at least because these are also considered good practice 
in general software development. In the sense of the authors, bio-medical imaging 
software should be: 
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• User-friendly: Non-experts should be able to use the software, meaning that 
detailed help and documentation are a necessity as well as availability of open 
mailing lists, forums and installation routines for different computer platforms. 
 

• Developer-friendly: Open-source licensing, well implemented, up to date 
available source-code and detailed documentation are key factors for academical 
software development. 

 
• Interoperable: Dividable into several degrees, interoperability can be either 

implemented quite simple by providing the ability to read certain file formats 
across different systems or can get up to the seamless integration of one’s 
software package functionality into another. 
 

• Modular: Software modules, designed to solve a specific problem, can be 
combined with modules solving other problems by implementation of the same 
interfaces. Modularity is a very powerful tool for the development of software 
with a high level of customization possibilities, thus enabling the applicability in 
different domains. 
 

• Validated: Extensive testing is the foundation for stable software and especially 
in domains like biomedical imaging, where results can be crucial for further 
decisions, software has not only to be tested but results have to be validated 
against reference results. Hence, the distribution of input data and its test results 
can help the user to validate whether the software is working correctly. 

It is understandable that detailed implementation of the above listed criteria might 
not be possible for every software development project and research group. However, 
consideration of these criteria and their implementation to a certain degree can certainly 
improve the usability of the software for outside-users and increase the availability of 
the algorithms to external developers.  

2.5.2 Usability Evaluation 

Improvement of a system’s usability can only be realized by the analysis of its current 
status of usability. Hereby, usability flaws can be detected and counter-measures can be 
taken to eliminate them. Empirical methods for the measurement of usability can be 
categorized as follows: 
  



2.5  Usability Engineering 27 

• Timing: Regarding the time users need to perform predefined tasks, conclusions 
can be drawn regarding efficiency, learnability and memorability of a system. 

 
• Counting: While counting the required keystrokes for the performance of a 

certain task can help to measure its efficiency, counting of problem occurrence 
during a human-computer interaction can deliver useful information about the 
error-proneness of a system or difficulties regarding its learnability. 

 
• Polling: Questionnaires addressing usability factors can help to gather users’ 

opinions on the usability of a system. This is a useful method for getting 
feedback about the subjective satisfaction. However, there is only little 
correlation to the objective performance. 

2.5.2.1 Heuristic Evaluation 

In addition to the described usability measurement techniques, additional identification 
of usability issues can be achieved by the usage of a usability engineering technique 
called „heuristic evaluation“. It is cost-effective, easy to learn, easy to use and can be 
conducted with only a small set of evaluators, since the proportion of found usability 
problems to number of evaluators stagnates relatively quickly (see Fig. 2.11). In order 
to perform a heuristic evaluation, evaluators have to apply a set of usability heuristics to 
a system, in order to identify violation of those and in the end assess their severities.  

 

 

Fig. 2.11:  Usability problems found by heuristic evaluation as a function of the 
number of total evaluators (average results from six studies) [44]. 
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Heuristic evaluation belongs to the branch of usability inspection methods which, in 
contrast to the empirical methods, are based on the evaluator’s informed intuitions about 
interface design quality [47]. Nielsen described ten heuristics a good interface design 
should follow [44]:  

1. Simple and natural dialog 
2. Usage of the users’ language 
3. Minimization of user memory load 
4. Consistency 
5. Feedback 
6. Clearly marked exits 
7. Shortcuts 
8. Good Error Messages 
9. Prevention of errors 
10. Help and Documentation 

While the above-listed heuristics represent a solid foundation for an evaluation, they 
can be altered and extended for the use in a more specific environment [48]. One of the 
main advantages of heuristic evaluation is that it can be conducted very early in the 
interface design process since it is applicable to paper and/or electronic mock-ups as 
well as to already implemented systems. However, a major drawback of heuristic 
evaluation is that predicted problems may not be congruent with actual problems. This 
is due to the rather simple implementation of the method and the fact that results are 
based on the intuition of the evaluators. As a consequence, false problems may be 
detected on the one hand and real problems may be missed on the other hand. In 
literature, a maximal usability problem hit rate of 50% per evaluator is described [49]. 
Nevertheless, based on the subjective nature of this method, different evaluators will 
most likely tend to find different problems, thus enabling the achievement of better 
performance through aggregation of all results.  



 

 

3 Methods 

Following established software development methods is considered good practice and 
helps to streamline the software development process. While this may not be of high 
importance for individual developers, it is very crucial for projects requiring teamwork. 
It lies in the responsibility of the developers to adopt the most appropriate method for 
their task and if required, to modify or even combine it with others from the pool of 
software development methodologies. Process models illustrate the procedures needed 
for implementation of those methods. While the early ones were of a linear nature and 
stipulated sequential processing (e.g. pure Waterfall model [50]), iterative and 
incremental approaches (derived from the generic Spiral model [51]) were designed for 
more flexibility in the software development process.  

For professional software developers, the advantages of using approved methods for 
the development process is beyond any doubt. However, the requirement for detailed 
and accurate specification and documentation, associated with such development 
methods, is often seen as an obstacle. Not only is it slowing down the innovation 
process in a project; it also compromises the possibility to react to spontaneous changes 
of requirements. For this reasons the Agile Movement has come into being with the 
Manifesto for Agile Software Development20. The main objectives of agile development 
are concerned with the emphasis on team relationship, deployment of well tested and 
working software, close collaboration with clients and the ability to react to changes in 
requirements during the development process life-cycle [52]. To enforce these efforts, 
agile development methods (e.g. eXtreme Programming (XP) [53] and Scrum [54]) 
typically have an iterative structure, propose the work in small groups (6-8 people), 
refuse detailed documentation and  promote a strong involvement of the customer into 
the development [55]. The popularity of agile methods is mainly due to the rapid growth 
in the web-based software and mobile application industry, where fast and nimble 
software development processes are crucial to keep up with client demands and new 
technologies. However, there are more than a few software development methods, and 
the selection of the most suitable one for a specific project has to be done carefully 
since taking wrong decision can easily lead to increased costs or even failure. 

Under the conditions of this project, with limited resources in development personnel 
and a timeframe of approximately six month, the selection of an appropriate software 
development model was relatively restricted. Slicer extensions are mostly developed in 
an agile way by the developer community and documentation is preferably provided via 

 
                                                
20 Manifesto for Agile Software Development: http://agilemanifesto.org 
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the 3D Slicer Wiki pages21. The main purpose of these extensions is to support novel 
research methods, thus implementation requirements are often not completely identified 
before the coding process. For this kind of software development the agile approach is 
well suited but also entails the risk of not being able to predict a concrete timepoint for 
finalization. To avoid this problem, the execution of a pure linear development model in 
which the required functionality is estimated realistically based on available resources, 
and not modified during the coding process, is a promising option. However, this 
procedure aggravates the second goal of this project to create a platform for the further 
development and prototyping of PET-specific algorithms. For the realization of such a 
platform, the ability to react to additional feature requests and to incorporate new 
available Slicer functionalities (if feasible in the context of the work) is of central 
importance. Hence, the development methods could not be too rigid so that they would 
prevent any subsequent modifications. In order to cope with these requirements, the 
software development processes of this work followed a modified Waterfall model with 
iterative and incremental methods. Furthermore, prototype driven approaches were 
incorporated for a better understanding of the main requirements. 

An illustration of the modified Waterfall model used in this work is shown in Fig. 
3.1. In this model, iterative interactions against the process flow are possible only 
between the design and implementation level and after the evaluation step. This 
precaution was taken in order to prevent additional specification of requirements once 
the software design phase started and before a preliminary version of the software was 
implemented. The possibility to alter or extend requirements is re-enabled after the 
evaluation of the implementation, which can be used to refine functionality. The 
implementation itself is based on the incremental build methodology. Functionalities are 
implemented subsequently offering the possibility to correct errors made in the design 
phase at relatively low costs since only increments affected by retrospective design 
changes need to be fixed. In contrast to the software development life cycle, which 
usually ends with the maintenance process, this project ended with the distribution of a 
functional extension for Slicer 4.  

In the following, the processes performed during the realization of this work, based 
on the flow of the applied software development method are presented. 

 
 

 
                                                
21 3D Slicer Wiki pages: http://slicer.org/slicerWiki 
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Fig. 3.1: Model of the customized software development method used in this 
project. Iterative interaction is permitted between design and 
implementation levels and after the evaluation. Implementation is 
performed incrementally. Distribution of the final product marks the 
end of the project.  

3.1 Requirements 

Requirements engineering is a subfield in software engineering, concerned with the 
process of formulating and documenting requirements in software development. 
Software project requirements are often categorized in two groups. First, core 
functionality requirements include the mandatory properties of the system. Second, 
ancillary, or non-functional requirement cover optional features that supplement the 
core functionality [56].  

Late incorporation of features that derived from requirements, which were missed at 
the time of analysis, is one of the main reasons for delays in software development. To 
reduce these risks, a mock-up driven requirement analysis was conducted in this project. 
The results from the initial requirements analysis process iteration were used to develop 
clickable mock-ups of the planned user interface. By using these mock-ups in an 
additional requirements analysis iteration, it was aimed to improve the yield of 
requirements gathering and optimize the development process.  

3.1.1 Gathering of initial requirements 

Chemutury [56] describes the activity of requirement gathering as a combination of  
elicitation and gathering. Elicitation is the collection of information from users, experts 
and persons directly concerned with the project. Gathering describes the indirect 
collection of information from sources like documents and existing applications.  
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During the initial aggregation of requirements for the software to be developed, the 
features of two existing Slicer modules were examined. First, the PET/CT Fusion22 
module from 3D Slicer 3 [35], [57] was looked at. As the name suggests, this module is 
capable of fused visualization of PET and CT image data. Moreover, it provides 
bodyweight normalized SUV computation for multiple segmented VOIs in one PET/CT 
dataset. Subsequently, the Change Tracker23 was examined. A characteristic of this 
module is its multi-step workflow that guides the operator through a series of parameter 
input panels before quantification is performed. These workflow steps are as follows. 
First, two different image data sets, for which changes should be tracked, need to be 
specified as baseline and follow-up scan. Afterwards, a region of interest (ROI) 
bounding box is placed around the changing structure of interest. This structure is then 
segmented in the baseline scan during the third workflow step. A segmentation with the 
same parameters is later applied to the follow-up scan. The fourth step is concerned 
with registration and analysis of the segmented volumes from both scans. Therefor, 
several settings for difference metrics may be made in the input panel. Finally, the 
volumetric quantification results are presented on the panel of the last workflow step.  

In conclusion, examination of both modules revealed that several functionalities 
might be useful for the implementation of this work. However, none of the modules 
could be easily extended to realize a tool for longitudinal quantification of tumor 
changes using PET imaging. While the PET/CT Fusion module has basic PET 
processing capabilities, it does not support the simultaneous analysis of multiple studies. 
Whereas the Change Tracker module supports longitudinal analysis but is not designed 
to function as a tool for visualization and quantification of PET/CT data. As a result, a 
module that has to be capable of both PET quantification and longitudinal analysis 
needs to combine the key functionalities from both examined modules. 

To extend the field of vision for useful requirements and avoid being too restricted 
on the available capabilities and methods of Slicer in the early stages of the 
requirements analysis, the functional principles of longitudinal PET analysis in a 
commercial system have also been evaluated. By participation in a live demonstration 
of the PET/CT analysis workflow syngo.via24 (Siemens), important insights about 
clinical PET analysis were gathered. 
  

 
                                                
22 PET/CT Fusion module: http://slicer.org/slicerWiki/index.php/Modules:PETCTFusionDocumentation-

3.6 
23 ChangeTracker module: 

http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/ChangeTracker 
24 syngo.via: http://healthcare.siemens.com/medical-imaging-it/clinical-imaging-applications/syngovia 
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Table 3.1:  Initial requirements classified in core (CF) or ancillary (AF) 

functionality. 

Requirement Description Functionality 

General requirements concerning the workflow 

R1.  Easy to use GUI Streamlined GUI and workflow optimized for an 
easy to learn operation.  CF 

Requirements derived from PET/CT Fusion module examination 

R2.  Fusion imaging Simultaneous visualization of overlying PET and 
CT image data using partial transparency of the 
foreground image and colored lookup tables. 

CF 

R3.  SUV computation Calculation of Standardized Uptake Values for 
the segmented volumes of interest. CF 

R4.  Registration Alignment of image data from follow-up PET/CT 
studies with baseline study. AF 

Requirements derived from ChangeTracker module examination 

R5.  Longitudinal 
Analysis 

Import and simultaneous handling of an 
unrestricted amount of PET/CT studies.   CF 

R6.  Qualitative Analysis Display of all segmentation from different studies 
in one view for qualitative comparison. CF 

Requirements gathered from evaluation of syngo.via functional principles 

R7.  Concept of grouping 
coherent 
segmentations 

Grouping of segmentations of the same structure 
from different time points.  CF 

R8.  Easy time point 
switching 

Shuffling between studies (from different time 
points) should be uncomplicated and accessible at 
every step of the workflow. 

CF 

R9.  3D volume 
rendering 

3D volume rendering of PET data for support in 
detection of tumor hot-spots.. AF 

Requirements based on the intention to leverage potentially useful Slicer functionalities 

R10.  3D surface models 
of segmented VOIs 

3D visualization of segmentations in the form of 
triangulated surface models. AF 

R11.  Quantitative analysis 
visualization 

Use of 3D Slicer 4 charting capabilities to 
visualize quantification results in plots. CF 
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3.1.2 Prototyping the Workflow 

In software development, mock-ups are often used as rudimentary throwaway 
prototypes for the GUI and do not provide any other functionality. This strategy is 
called horizontal prototyping, based on the fact that the whole width of a system is 
represented while deeper functionality is not implemented yet. Design and generation of 
the GUI mock-ups for the requirements analysis were realized by using the open-source 
GUI prototyping tool Pencil25. By offering various selections of elements for the easy 
composition of user interfaces, this tool is superior to standard graphical editors, 
especially when speaking about productivity. Moreover, the possibility to define user 
controlled interaction between different mock-ups by exporting projects as HTML 
pages can help to improve the awareness for the planned procedures. 

Inspired by the workflow and GUI setup of the ChangeTracker module, the 
workflow for the PET quantification module was also divided into multiple steps. The 
first one represents the import of PET and CT data from a DICOM database. This step 
has to be completed in order to be able to select PET/CT studies for further analysis. 
Based on the image data from these studies, detection of lesions and segmentation of 
those is following in a next step. Finally, quantification is performed based on the 
segmentation results. As differentiability of the subsequent steps helps to improve user 
awareness of the current workflow state, a wizard-based design was chosen for the first 
GUI prototype. In terms of computer science lingo, a wizard is a graphical user 
interface with subsequent input screens, designed to assist users at certain tasks like 
software installation routines. Its most distinct feature is the possibility to navigate forth 
and backwards between the different screens. 

3.1.3 Elicitation of Additional Requirements 

For the elicitation of additional requirements based on the first GUI mockup prototype, 
interviews with 3D Slicer developers, clinical researchers and potential future users 
were planned. For that reason, this project and the mockups of the workflow have been 
presented at the 2012 NA-MIC Summer Project Week at MIT in Cambridge (MA). A 
project event, which recorded 88 registered attendees, representing 20 academic sites 
and 8 companies [58]. NA-MIC project events have been initiated in 2005 and are held 
twice a year with the main goal to bring together NA-MIC participants and also active 
and potential collaborators. Maximization of informal interaction between participants 
and bringing forth the deliverables of NA-MIC is the main goal of these events [59].  

Following the initial presentation of this project on the opening day, eight interviews 
with main developers and potential users were conducted. While the former were 

 
                                                
25 Pencil Project: http://pencil.evolus.vn 
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looking for a platform to support their efforts in PET data processing with Slicer, the 
latter were interested in the functionality of a module for longitudinal PET 
quantification. The summary of additional requirements collected in these interviews is 
presented in Table 3.2. While requirements formulated by developers mainly concerned 
data structure and reusability of available code, potential users required improvement of 
the GUI and inclusion of additional functionality. Further, external developers were 
interested to use this work as a platform for their own work. 

 

Table 3.2:  Additionally elicited requirements classified in core (CF) or ancillary 
(AF) functionality. 

Requirement Description Functionality 

Additional requirements concerning the workflow 

R12.  Organize data in a 
„Report“ 

Organization of all data imported from DICOM or 
generated during the workflow in a data structure 
called “Report”,. 

CF 

R13.  Organize 
segmentation results 
in  „Findings“ 

All segmentations of the same structure from 
different time points belong to one „Finding“. CF 

R14.  Additional study 
importing 

Support of loading of additional studies into an 
already existing workflow. AF 

R15.  Export  of results as 
PDF to DICOM 
database 

Storing of  analysis results in DICOM database by 
creating a PDF file and pushing it to the database. AF 

Additional requirements for the GUI 

R16.  Facilitate switching 
between workflow 
steps 

Based on its sequential paradigm, navigating 
between non-adjacent steps in a wizard can lead to 
loss of awareness regarding the workflow state.  
An alternative apporach to the wizard is required. 

CF 

R17.  Consistent 
availability of main 
controls 

GUI controls like the slider used for switching 
studies and the tree view should always maintain 
the same position in the view and be available in 
all steps of the workflow. 

CF 

R18.  Minimalize GUI 
load 

Only display the controls absolutely necessary to 
perform the workflow and by default hide the ones 
for advanced settings.  

AF 

Additional functionality requirements 

R19.  Integrate Editor 
module  

Integrate Slicer’s manual and semi-automatic 
segmentation tools into the module.  CF 

R20.  Multiple volume 
rendering 

Provide multiple 3D viewers for different volume 
renderings in the comparison view. AF 

R21.  HLC chart type for 
SUVs  

Use the High-Low-Close chart type to plot SUV 
minimum, mean and maximum values. AF 
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Based on the results of the second requirements analysis iteration, a new prototype 
was designed. While the first rudimentary prototype was mainly a composition of 
clickable mockups, the intention for the second prototype was to streamline the GUI 
and provide advanced interaction possibilities to improve user feedback. For the 
implementation of such an improved horizontal prototype, the use of Qt developer 
tools26 was considered as appropriate. Given the fact that the GUI of Slicer 4 is based on 
the Qt framework, a similar look and feel could be realized in the prototype. Using the 
cross platform Qt Designer for GUI building and the Qt Creator integrated development 
environment for coding of advanced interactions between GUI elements, a simple 
application GUI prototype was implemented in a timely manner.  

3.1.4 Final Requirements 

The third and last iteration of the requirements analysis was conducted based on the 
second prototype. The application itself and a video demonstrating its use on the basis 
of an example workflow were distributed to an external nuclear medicine research 
group. This group has shown interest in using the final application for their work and 
formulated an additional list of requirements, which are presented in Table 3.3.  

 

Table 3.3:  Final requirement additions in the requirements analysis, classified as 
ancillary functionality (AF). 

Requirement Description Functionality 

Additional functionality requirements 

R22.  PET data only 
visualization 

Besides automatic PET and CT fusion imaging, 
selection for visualization of PET data only should 
be available. 

AF 

R23.  Support 
segmentation on CT 
data 

Enabling of the possibility to use segmentation 
tools on CT data too. AF 

Additional requirements for the GUI 

R24.  Simple and 
informative 
workflow overview 

Display of the current workflow state using a 
simpler view than the tree view used in both GUI 
prototypes.  AF 

 
  

 
                                                
26 Qt developer tools: http://qt.digia.com/Product/Developer-Tools/ 
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3.2 Design 

The successive design of a software system is a procedure that can be approached from 
four different directions. Top-down, bottom-up, inside-out and outside-in are the 
catchphrases used to describe these directions. The spatial perception of this model is 
shown in Fig. 3.2. Ludewig and Lichter [55] explain the different approaches as 
follows. 

 Starting to design software based on an abstract task or problem with the aim to 
develop a detailed and concrete solution is considered to be a top-down procedure. 
Recursive partitioning of the problem until an elementary level is reached (commands 
of the programming language) is the most common strategy in this kind of 
development. In contrast to this analytical approach, bottom-up development is based on 
repeated synthesis of low-level components until the final solution is obtained. 
Beginning the development of the software with the internals of a system and working 
towards a user interface can be described best as an inside-out approach. Typically this 
is the case when additional functionality is added to an already existing system, e.g. a 
graphical user interface for more convenient operation of an existing command line 
application. Outside-in is the last of the four different directions, implying the design of 
a system based on an already existent interface. Use of the outside-in approach is most 
appropriate in cases where stakeholders have evaluated a horizontal prototype and 
details of implementation are not specified yet. 

Due to the results achieved in the requirements analysis of this project, the detailed 
second GUI prototype was used for further design, following the outside-in strategy. In 
the remainder of this section, the architectural design for the software is presented. 
Special focus is given to the modeling of required class hierarchies, event- based GUI 
behavior and optimized handling of user interaction. 

 
 
 
 
 
 
 
 
 
 

Fig. 3.2:   Directions for development in software design [55]. 

Task, Problem 

System-Software, Hardware 

Interface 

bottom-up 

top-down outside-in 

inside-out 
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3.2.1 Module Type Selection 

Slicer supports three different types of modules [60]. Before the implementation of a 
new module, developers have to make the decision whether a command line interface 
(CLI), a loadable module or a scripted module type is most suitable for their tasks.  

CLI modules are standalone executables or shared libraries, providing only limited 
input/output parameter complexity. Moreover, they do not support user interaction other 
than selection of input and output parameters in a GUI, generated from an XML 
(Extensible Markup Language) schema file. Autonomically working algorithms, once 
input parameters are passed, are best implemented and distributed as CLI modules.  

Loadable modules in contrast, offer full control over their own GUIs, access to all 
internal Slicer data structures (MRML data, program logics and display managers) and 
to the APIs of the toolkits used within Slicer. These modules are distributed as shared 
libraries, which are loaded at startup of the application. Complex user-system 
interaction, data processing and visualization can be realized within a loadable module. 
However, the increase in possibilities and functionalities depends on a more extensive 
implementation following the MVC design pattern of the main application.  

While CLI and loadable modules require implementation in C++, scripted modules 
in Slicer 4 are written using the programming language Python. Similar to the loadable 
ones, scripted modules offer access to Slicer internals and to the APIs of the toolkits 
that are fully wrapped for Python use (VTK, ITK, MRML, CTK, Qt). With access to 
CTK and Qt, scripted modules also provide full control over their GUI. The main 
advantage of implementing a scripted module lies in the increased productivity based on 
the simplified programming realized by the scripting language. While C++ written code 
has to be recompiled after every change, scripted Slicer modules offer a mechanism 
capable of updating the module during execution. Despite of all its advantages, the 
generation and integration of additional MRML data types is not possible within a 
scripted module since the MRML library is written in C++.   

Requirements analysis has shown that using only data types from the MRML library 
will not suffice the needs for modeling of the data structure for the new module. Taking 
this into account, the implementation of the work as a loadable module is required. 
However, the advanced build mechanism of Slicer offers the possibility to integrate 
scripted classes into loadable modules in order to create a hybrid module written in C++ 
and Python. For the creation of such module, a majority of components can be 
implemented using Python scripts, apart from the mentioned custom MRML classes, 
and the logic responsible for integration of those into the main application. Given that 
possibility, the decision was made to implement this work in the form of a hybrid 
module. In so doing, the possibility to integrate own MRML data types while still being 
able to leverage the advantages in productivity using the supported scripting techniques 
was retained. 
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In the following section the design for module specific MRML classes is presented 
and an overview of the event-driven interaction of GUI elements with the module’s 
Model and Controller classes is given.  

Please note that although the software tool implemented in this work will be 
distributed in the end as an extension for Slicer, it will be mostly referred to as module 
in the remainder of this work. This is due to the fact that the implementation of an 
extension does not differ from the one of a module. The only difference is the fact that 
extensions do not belong to the standard distribution of Slicer but can be installed on 
demand (for further details see section 2.4.5).  

3.2.2 Model Classes - MRML 

In the MVC driven architecture of Slicer, the Model is based on classes and hierarchies 
defined in the Medical Reality Markup Language and accessible via the MRML library. 
When implementing own classes derived from the base class MRMLNode, Slicer’s event 
driven pipeline functionalities are automatically inherited and seamless integration into 
Slicer’s MRMLScene is possible. The abstract superclass for all specific types of MRML 
classes is the vtkMRMLNode. As the nomenclature suggests, this class inherits a VTK 
class, namely vtkObject27. This abstract VTK base class mostly provides methods for 
the implementation of an event-driven architecture offering mechanisms for registration 
of observing instances and invoking of events. The vtkMRMLNode class extends this 
functionality with variables and methods for identification and organization in the 
MRMLScene, duplication, serialization and deserialization.  

All classes in the Model of the module to be implemented derive directly from 
vtkMRMLNode and overwrite the inherited abstract methods for duplication, 
serialization, deserialization and console output. In order to realize the data hierarchy 
that was elaborated using the prototypes in the requirements analysis, four new classes 
needed to be implemented for the Model. Following Slicer naming guidelines, these 
classes are named as follows:  

• vtkMRMLLongitudinalPETCTReportNode (further referred to as 
Report): Organizes patient information and manages the different Studies and 
Findings of the analysis workflow. 

 
• vktMRMLLongitudinalPETCTStudyNode (further referred to as Study): 

Handles PET and CT image data loaded from a DICOM study. 

 
                                                
27 Documentation of vtkObject classs: http://vtk.org/doc/nightly/html/classvtkObject.html 
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• vtkMRMLLonigtudinalPETCTFindingNode (further referred to as 
Finding): Represents a structure of interest that can be segmented for 
quantification across the image data of all studies.  

 
• vtkMRMLLongitudinalPETCTSegmentationNode (further referred to 

as Segmentation): Stores the quantification result that were computed for a 
certain segmentation in the image data of a specific study. 

 
A simplified UML (Unified Modeling Language) class diagram of the above listed 

classes is shown in Fig. 3.3 (see appendix A for detailed UML diagrams). An object of 
Report represents the backbone of every PET/CT analysis workflow. It is bound to a 
single patient and contains image data from his PET/CT DICOM studies and the 
Findings that are created during analysis. All data loaded or generated for an analysis 
workflow can be accessed through the respective Report object. Objects of Study are 
concerned with PET/CT imaging data. They may each contain one PET and one CT 
image series from a DICOM PET/CT study. Moreover, Study also provides additional 
infrastructure required for segmentation, 3D volume rendering and registration of its 
PET/CT image data. While Finding is used to represent a tumor or a reference 
structure that is present in the PET image series of at least one PET/CT study, 
Segmentation handles an actual segmentation for such a Finding and stores the 
quantification results. In every Finding, one Segmentation may be created for each 
Study available in Report. 
 

   

Fig. 3.3: UML class diagram of the Model classes (MRML) 
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3.2.3 View Classes - Widgets  

All GUI widgets implemented in this work are written in C++, although the 
possibility to use Python scripting for the composition of the module’s GUI is given. In 
so doing, the individual widgets are directly accessible as Qt conform objects and are 
not encapsulated within Python script files. By separating the GUI in multiple widgets 
containing coherent controls, a higher modularity can be achieved. Creation of 
customized Qt signals is also a great benefit when coding Qt widgets in C++. This 
allows bundling of different signals into a single one specialized for the specific task. 
Not only does this reduce the logical complexity of the application, it also helps to keep 
the code clean. Another functionality provided by VTK and not yet accessible from 
Python is the connection of VTK based events with slots in Qt objects. Given the fact 
that all classes from the MRML-Library derive from vtkObject, this opens the 
possibility for implementation of autonomically updating GUI widgets. Being able to 
receive a signal whenever a MRML object has been modified, a widget containing 
specific information about this object can automatically react to the modification and 
update itself without any interaction from the application’s logic. 

Designing ajar to the GUI prototype developed for requirements analysis, it was 
advisable to break down the module’s default GUI into multiple widgets. For every 
single workflow step a separate widget was implemented. In addition to these, a widget 
for facilitated review of the current workflow state and a widget for modification of 
workflow related settings was provided (see Fig. 3.4). 

 
 

 

Fig. 3.4:  UML class diagram of the View classes. All GUI widgets derive from 
the AbstractPETCTModuleWidget. A pointer to the active Report 
is stored in each widget, thus enabling autonomic updating of the 
widget whenever this Report object is modified.  
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The abstract class AbstractPETCTModuleWidget represents the base class for all 
widgets of the module. Its only attribute is a pointer to a Report object. Whenever a 
Report is assigned to an object of the class, the object’s specific VTK-event for 
modification is automatically connected to the abstract updateWidgetFromMRML() 
slot method using the VTK event - Qt slot connection functionality. All subclasses are 
required to overwrite this method in order to update their visual representation upon 
modification of the connected Report object. The ReportWidget represents the GUI 
widget for the first workflow step. Selection between all Report nodes available in the 
active MRMLScene and information about the respective patient are provided in this 
widget. Using the functionalities of its built in StudyTableWidget, the 
StudyWidget offers the possibility to add or remove Study objects to or from the 
analysis workflow, which is done in the second workflow step. The FindingWidget 
provides options for creation, selection or deletion of Finding objects and the 
possibility for localization of those in the image data. After creation of a Finding 
object, the FindingSettingsDialog is used to specify the name and color identifier 
of the newly created Finding. Furhtermore, a widget representation of Slicer’s Editor 
module is also integrated in this widget. The built-in Editor module provides direct 
access to the tools required for segmentation. Handling of Finding and 
Segmentation objects is part of the third workflow step. Similar to the 
StudyWidget, the AnalysisWidget contains a built in 
StudySelectionTableWidget for individual comparison of analysis results in the 
forth workflow step. Selection between qualitative or quantitative analysis is also 
possible from within this widget as well as the export of analysis results to disk.  

Insights gained from prototype development suggest that only one workflow step 
related widget should be visible at a time. Since these widgets are all individual 
instances at runtime, this requirement is easily implementable. However, for an even 
better awareness of the PET/CT analysis process, the ReportOverviewWidget 
provides a facilitated overview of the current workflow state. Moreover, it can also be 
used as a browser for quick access to image data from specific PET/CT studies or 
segmentation results of certain Findings.  

As already mentioned above, autonomic updates of GUI widgets are handled by the 
connections of the abstract base class’s Report object to the overwritten 
updateWidgetFromMRML() slots. Outgoing communication is realized by signal 
emission. Each time a user interacts with one of the GUI controls, the widget containing 
this element emits a specific signal, which then can be processed in the module Logic.  
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3.2.4 Controller Classes - Logic 

While the classes of Model and View are written in C++, almost all classes of the 
module’s Controller (Logic) are written in Python. The sole exception is a single C++ 
class required for registration of the module’s MRML nodes to the main application. A 
total of four Python classes represent the module’s Logic (see Fig. 3.5).  

The DICOMPETCTPlugin is a class exclusively dedicated to the import of valid 
PET/CT studies from Slicer’s DICOM database. In Slicer 4, this is realized using the 
DICOM module’s plugin functionality. Objects of classes that inherit Slicer’s 
DICOMPlugin28 class and implement its virtual methods are automatically registered to 
the DICOM module during application startup.  

As explained in the previous paragraph, user interaction in the module’s GUI is 
forwarded to the application Logic using signal emission. During composition of the 
GUI widgets, these signals are connected to the corresponding slots by an instance 
of the main Logic class (LongitudinalPETCTModuleLogic). Besides access to all 
GUI widgets of the module, the class also is able to store user selected Report, Study 
and Finding objects. Having access to this data, the required reaction to user 
interaction can be easily implemented in the respective slots of the main Logic class.  

Non-slot methods of LongitudinalPETCTModuleLogic are either concerned 
with the appropriate visualization of image data for a specific workflow step or support 
of the segmentation process. Two additional Controller classes grant support for such 
main-application related operations. On the one hand, the VisualizationHelper 
class contains methods for switching between different visualization modes and 
provides access to Slicer’s objects for data visualization such as the 2D Slice Viewers 
and the 3D Volume Rendering Viewers or the Chart View representation. On the other 
hand, the SegmentationHelper class mostly provides methods for processing of 
segmentation results in the context of the module.  

 

 

Fig. 3.5:  UML class diagram of the Controller classes. 

 
                                                
28 DICOM Plugin: Class Reference: 

http://slicer.org/doc/html/classDICOMLib_1_1DICOMPlugin_1_1DICOMPlugin.html 
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3.3 Implementation 

Based on the underlying software development process model of this work, the 
implementation of the module was conducted by following an incremental build 
approach. In contrast to the horizontal prototyping, done in the requirements analysis, 
the incremental implementation represents an evolutionary vertical prototyping process. 
Fully functional subparts of the software are successively coded, tested and reviewed 
before their integration into the system.  

Implementation of the software realized in this work was partitioned into eight build 
increments. Each increment depends on the functionality of the previous one and 
consists of certain parts from the Model (MRML), View (Widget) or Controller (Logic) 
of the module. The process of implementation was oriented to the GUI widgets 
representing the different workflow steps of the PET/CT analysis. However, before such 
a GUI widget could be implemented, the data structure required for full functionality of 
the widget had to be made available. Then, after the widget was finalized and offered all 
designated functionality, the module’s Logic was enhanced to ensure seamless 
integration of the newly implemented elements and full support for user-system 
interaction. In the Slicer main application GUI (see Fig. 3.6), the module’s GUI was 
integrated into the Module Panel (on the left).  
 
 

 

Fig. 3.6:  Slicer main application GUI with empty Module Panel and PET/CT 
Fusion visualization of loaded image volumes. The new PET/CT 
analysis module is integrated into the Module Panel (left) and can be 
selected with the Module Selector (top-left). During an analysis 
workflow, extensive use of the 2D Slice Viewers and 3D Volume 
Rendering viewer is made for visualization of 3D image data and 
segmentations results. 
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In the first build increment, scanning of Slicer’s DICOM database for patients with 
valid PET/CT studies and loading of PET and CT image volumes from these studies 
into the MRMLScene was realized. Provision of access to the loaded data belonged to the 
implemented functionality of the second increment. Selection of image volumes for 
further segmentation and analysis together with advanced 2D and 3D visualization were 
objectives for the third increment. Afterwards, the foundation for organization of 
segmentation and quantification results was laid in the forth increment by 
implementation of the Finding data structure. This one was introduced in the second 
GUI prototype. Actual segmentation and quantification of PET image data was part of 
the fifth increments’ functionality implementation along with 2D and 3D visualization 
of the segmentation results. The sixth increment was concerned with provision of 
overview of the workflow and quick access to key data. Qualitative and quantitative 
analysis visualization, as well as the possibility to export the analysis results to disk, 
were implemented in the seventh increment. Finally, saving and loading of the 
generated data and the possibility to modify PET/CT related visualization and 
computation settings in the module was realized in the last build increment. 

In the following, the techniques deployed in the incremental building of the above-
mentioned module subparts are presented. The module implemented in this work is 
further referred to as Longitudinal PET/CT Analysis module. 

3.3.1 Increment 1 - Loading of PET/CT Data from DICOM Database 

Using only built-in Slicer DICOM plugins to import PET/CT studies for a longitudinal 
multi-study analysis implies a cumbersome manual selection of the related PET and CT 
image series. Hence, the implementation of a new plugin that is capable of automatic 
selection and organization of the appropriate PET and CT DICOM data was advisable. 
Such a plugin needs to summarize and present all coherent image data in one selectable 
element.  

The objective for the first build increment was to implement a new DICOM plugin 
specialized on loading of PET/CT studies from DICOM database into the MRMLScene 
and to provide the data structure required for this transition. 

3.3.1.1 MRML Implementation 

In the Longitudinal PET/CT analysis module, an instance of Report represents the 
backbone of every PET analysis workflow. In the first build increment, a Report’s 
main objective is to provide access to the image volumes loaded from the DICOM 
database. Objects of the Study class handle organization of these volumes. At the 
beginning, a Study object is implemented to store the unique identifiers of each, a PET 
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and a CT image volume, and provide methods for assignment and access of those. In the 
implementation of Report, Study objects are maintained in a vector29 variable, in 
which they are sorted chronologically according to the acquisition date of their image 
data. 

All Model classes implemented in this work derive from the MRML-Library base 
class vtkMRMLNode. In doing so, compatibility with Slicer’s MRMLScene and access to 
the advanced event-handling functionality of Slicer is provided automatically. 

3.3.1.2 GUI Widget Implementation 

The required interface for loading of image data from Slicer’s DICOM database into the 
MRMLScene is already provided by the DICOM-Browser from the DICOM module. 
Hence, there was no need for implementation of a new GUI widget in the context of this 
build increment.  

3.3.1.3 Logic Implementation 

The scripted Logic class DICOMLongitudinalPETCTPlugin represents the DICOM 
plugin provided by the Longitudinal PET/CT module. It belongs to the module Logic, 
since it only realizes the actual loading of DICOM data and does not provide an own 
GUI. An interface for access of this plugin is supplied by Slicer’s DICOM-Browser. 

To ensure full compliance with the DICOM plugin infrastructure, the plugin must 
inherit the base class DICOMPlugin and overwrite two of its virtual functions. One of 
these is required for the examination of the user selected DICOM data hierarchy while 
the other handles the transition of DICOM data into derivates of vtkMRMLVolumeNode 
objects.  

In the DICOMLongitudinalPETCTPlugin, the overwriting implementation of the 
former function is dedicated to parsing of user-selected DICOM data hierarchies for 
studies with PET and CT image series. Only studies that contain image series from both 
types are considered valid PET/CT studies and qualify for the longitudinal PET analysis 
workflow. References for access of the image data from those PET/CT studies are 
cached during the examination process. The overall examination results are summarized 
into a single data object, which is returned to the DICOM module. There, it is presented 
as a single entry in the DICOM-Browser amongst the examination results of the other 
DICOM-Plugins.  

Loading of PET/CT DICOM image data into Slicer’s MRMLScene is implemented in 
the second overwriting function. Access to image data that has been cached during the 
examination step can be accessed using the summarized result object. Similar to the 

 
                                                
29 Sequence container implementing a data array capable of automatic resizing and random accessing 
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approach in the default DICOM-Plugin for loading of scalar volumes, all selected PET 
and CT image series are transformed into vtkMRMLScalarVolumeNode objects. In 
addition to that, related PET and CT volumes are each assigned to newly generated 
instances of Study, where they are stored together with PET/CT study and image series 
parameters, which is important for PET quantification. Finally, all unique identifiers of 
the Study objects and information about the patient are stored in an instance of 
Report, which is then added to the MRMLScene.  

An overview of the above presented process sequences is given in Fig. 3.7. 
 

 

Fig. 3.7: UML Sequence Diagram for loading of PET/CT DICOM studies into 
the MRMLScene using the DICOM-Browser and the 
DICOMLongitudinalPETCTPlugin.  

 

3.3.2 Increment 2 – Selection of Active Report Object 

With the finalization of the DICOMLongitudinalPETCTPlugin in the first build 
increment the requirements were met for the implementation of the actual module in the 
second build increment. The main goal of this increment was to enable individual 
selection of the Report objects that are loaded into the MRMLScene. By design, only 
one Report object can be active in the module at a time, thus only data belonging to 
this Report is editable in the module. In the following, the implementation of a GUI 
widget for determination of the active Report and the implementation of application 
logic required to support such selection is presented. 
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3.3.2.1 GUI Widget Implementation 

The starting point of every longitudinal PET/CT analysis workflow is initiated by the 
selection of a Report object. Hence, a GUI, which provides the controls for such 
selection, is required. The appearance of this interface is shown in Fig. 3.8. 

For the actual selection, a combobox30 presenting all available Report objects from 
the MRMLScene is used. Patient information, stored in the selected instance of Report, 
is also presented in this GUI widget. If desired, this information can be hidden using the 
button located at the bottom. In case that these specifics are not of interest or when only 
low screen resolution is available, this feature helps to improve the visual appearance of 
the widget by providing a tidy and compact interface. 

An information label on the top right, which appears in this and all further 
implemented GUI widgets of the module, represents a novelty approach in Slicer GUI 
design. Hovering the mouse cursor over this label triggers the temporary display of a 
textbox with information about the widget’s functionalities. 

 
 
 

 

Fig. 3.8:  GUI widget for active Report selection 

 
3.3.2.2 Logic Implementation 

Implementation of the Logic for active Report selection contains of a single slot 
method and a variable representing this current active Report. The method is able to 
receive signals that are emitted from the GUI whenever the Report selection 
changes. Then, the selected Report is assigned to the previously mentioned variable (see 
Fig. 3.9). 
 

 
                                                
30 GUI control, represented by a combination of a drop-down list and a textbox. 
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Fig. 3.9:  UML Activity Diagram for the selection of the active Report object in 
the first workflow step. 

 
3.3.3 Increment 3 – Visualization of Image Data 

By design, PET and CT image volumes referenced by the loaded Study objects are not 
by default unlocked for segmentation in the module. In order to unlock them and by this 
means add them to the further analysis workflow, user interaction is required.  

Providing an overview of the selected Report’s Study objects and the possibility 
to select or deselect those for segmentation and further analysis was the objective of the 
third build increment. The following three paragraphs describe how the module 
implementation was enhanced to provide the required functionality for such 
presentation and selection of Study objects. 

3.3.3.1 MRML Implementation 

Based on the implementation from the first increment, Study objects only provide the 
functionality to manage PET and CT image volumes. In order to support the selection 
for segmentation and provide all required data for 2D and 3D visualization of the image 
volumes, enhancement of the Study class was required. Besides a boolean31 variable 
for labeling the Study object as selected for segmentation, three additional variables 
were included. Since segmentations in Slicer are performed on 
vtkMRMLScalarVolumeNode-based objects called label map volumes, Study objects 
require a variable to store the unique identifier of such volumes. For 3D volume 
rendering visualization, objects of the type 
vtkMRMLVolumeRenderingDisplayNode are used. On that account, the Study class 

 
                                                
31 Data type limited to two possible values, usually denoted as true and false. 
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was enhanced to be able to store unique identifiers of such objects too. The last of the 
new variables is used to keep track of vtkMRMLLinearTransformNode objects. 
These can store the parameters of a linear transform, which is used for registration of 
one Study object’s image data with another’s. Naturally, methods for access and 
modification of the listed variables were also added to the implementation of the Study 
class. In contrast to the rather extensive adaption of the Study class, enhancement in 
the Report class was confined to an additional variable, and it’s access and 
modification methods. This variable is responsible for storing the Study object, which 
has been selected by the user in the GUI to be the current active Study. Ajar to the 
concept of active Report, only the image volumes of one Study can be visualized by 
the module at a time, this being the one selected as active.  

3.3.3.2 GUI Widget Implementation 

The GUI widget implemented in the third increment offers twofold selection 
possibilities. Firstly, it can be used to select Study objects in order to unlock them for 
segmentation in the following workflow steps. Secondly, it allows the selection of the 
active Study whose PET and CT image data can then be visualized in the 2D Slice and 
3D Volume Rendering viewers of the main application. This GUI widget is presented in 
Fig. 3.10. A tabular presentation of all Study objects available in the active Report is 
the main component of the widget. Corresponding to the acquisition of their image data, 
the Study objects are listed chronologically from top to bottom. Information, which has 
been stored in the Study objects during the loading process from the DICOM database, 
is presented in the numerous columns of the table. Details of DICOM specific 
identifiers, acquisition dates and information used for the computation of SUVs are 
shown. By checking the checkboxes in the first column of the table, Study objects can 
be selected for further segmentation and analysis. Marking a row in the table, by 
clicking on one of its cells, can be used to select the active Study object. However, 
only rows in which the checkbox in the first column is checked can be marked. The 
reason for this restriction is that only the image volumes of Study objects, which have 
been added to the workflow (marked for segmentation), should be visualized. Likewise 
to the Report selection GUI widget implemented in the previous increment, an 
information label is available in the top right corner, explaining the widget’s features 
and their usage. 
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Fig. 3.10:  GUI Widget providing Study objects overview and selection 
possibilities. 

 
3.3.3.3 Logic Implementation 

For the integration of the new GUI widget and leverage of the enhanced MRML data 
structure, the implementation of two slot methods was required in the module’s Logic 
class. While one slot handles the selection and deselection of a Study object for 
segmentation, the other one is responsible for assigning the active Study to the 
corresponding variable. A UML activity diagram of the process flows supported by the 
Logic enhancement in the third increment is shown in Fig. 3.11. When a Study is 
selected for further segmentation, the respective signal emitted by the GUI is received 
by the Logic and the Study object’s variable for this selection status is set to true. 
When deselected, this variable is set to false. If selected for segmentation, the Logic 
initializes the visualization of the Study object’s image data. This process includes the 
generation of a vtkMRMLScalarVolumeNode label map, a 
vtkMRMLVolumeRenderingDisplayNode for volume rendering visualization and a 
vtkMRMLLinearTransformNode object required for registration of the image 
volumes. After creation, the unique identifiers of those objects are all stored in the 
respective Study object. Subsequently, the variable holding the active Study is 
updated. A Study  selected for segmentation is automatically set as the active Study  
and the Logic manages the visualization in the 2D Slicer and 3D Volume Rendering 
viewers. On the other hand, a Study  deselected from segmentation has all its image 
data removed from visualization and if available, an adjacent selected Study  is set as 
active by the Logic (Fig. 3.11a). 

The second slot added to the Logic in this increment reacts to the signals emitted 
by the GUI when the active Study is changed. After reassignment of the variable for 
active Study, the method updates the 2D Slice Viewers and the 3D Volume Rendering 
viewer with the image data of the new active Study (Fig. 3.11b). 

 

Checkboxes for 
adding/removing 
Studies to/from 

the current 
workflow  

 

Label, providing 
information 
about the 
widget’s 

functionalities, 
when mouse 

cursor is moved 
over 

Table, presenting all Studies loaded from DICOM 
database for the current selected Report 

 



 3  Methods 

 

52 

 

Fig. 3.11:  UML activity diagrams for selection of Study objects for segmentation 
(a) and as active Study (b). 

 
3.3.4 Increment 4 - Creation and Selection of Findings  

Assessment of tumor changes in time series PET requires the segmentation of the tumor 
in each single image series in order to be able to analyze the changes. The Longitudinal 
PET/CT module is restricting neither the amount of time-displaced PET/CT studies that 
can be examined nor the amount of different structures, which can be segmented in each 
PET image series. For that reason, the Finding data structure was introduced during 
the requirements analysis and design phase of this project. The goal of the forth build 
increment was to implement a new MRML class for this data structure and provide a 
GUI widget for the creation and selection of it. 

3.3.4.1 MRML Implementation 

At the beginning, the new MRML class vtkMRMLLongitudinalPETCTFindingNode 
(further referred to as Finding) provided and handled four different variables. Since 
distinguishability of Finding objects is important for the overview in the analysis 
workflow, a unique color can be assigned to each Finding object after creation. Such 
color derives from a built-in Slicer color table, which provides the default colors for 
segmentation of the Editor module. However, only the identifier needed to access the 
color from the table is stored in a Finding object. In the workflow, placing an ROI 
bounding-box in the 2D Slicer Viewers specifies the location of the Finding in the 
image data. The coordinates of the ROI center and its radius are stored in two different 

a. 

b. 
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three-data array variables. The last variable is a boolean flag which indicates whether 
an ROI for the Finding object has been placed by the user.  

For full integration of the new Finding class on the MRML level, enhancement of 
the Report class was required too. Similar to the vector-based management of Study 
objects, Finding objects are also maintained in a vector variable in Report. An 
additional variable was also included for the purpose of storing the user-selected active 
Finding. 

3.3.4.2 GUI Widget Implementation 

Using the Slicer built-in combobox GUI widget for MRMLNode selection 
(qSlicerMRMLNodeComboBox) allowed compressing of the controls needed for 
creation, selection and deletion of Finding objects into one control in the user 
interface. The GUI implementation in this build increment consisted of a widget (see  
Fig. 3.12.a) and a dialog (see Fig. 3.12.b). In the widget, the above-mentioned 
combobox is located in the middle of the top area of the widget. When expanded, it 
exposes access to the controls for creation of new and deletion of existing and selected 
Finding objects. Underneath located is the button for ROI placing, which is activated 
subsequently to the selection of a Finding object. Clicking this button activates the 
module’s functionality for placing an ROI bounding box in the 2D Slice Viewers of the 
main application. Visualization of such bounding boxes in the viewers can be activated 
or deactivated using the control for ROI visibility. Following the design of the GUI 
widgets implemented in previous increments, an information label is available in the top 
right corner. 

In the dialog (see Fig. 3.12.b), a preset of 5 different Finding types is given. These 
consist of tumor, lymph node, liver, cerebellum and aorta, and represent structures that 
are often segmented in PET analysis. Thus, quick setting of Finding parameters using 
these presets can improve the usability of the workflow. In case that none of the presets 
matches the Finding intended to create, manual setting of the name and selection of a 
color identifier is possible using the GUI controls located underneath the presets 
buttons. 
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Fig. 3.12:  GUI Widget for creation and selection of Finding objects (a) and 
Dialog for setting of tumor name and color identifier (b). 

 
3.3.4.3 Logic Implementation 

While Report and Study objects are generated automatically by the application, the 
existence of Finding objects is fully controlled by the user. Instantiation of said 
objects and their integration into and removal from the MRMLScene is performed 
automatically by the qSlicerMRMLNodeComboBox, which was integrated into the 
module’s user interface in the previously presented GUI widget. In those circumstances, 
the enhancement of the module’s Logic was focused on the further processing and 
customization of the Finding objects for the analysis workflow. Once a new Finding 
has been added to the MRMLScene, the Logic receives the object in a signal from 
the GUI and adds it to the Report as the current active Finding (Fig. 3.13.a). The 
method for this assignment is also a slot, which is used to receive the signals from 
the GUI whenever the active Finding is changed (Fig. 3.13.b). In case that a Finding 
has been created in the widget, the dialog pops up and gives the user the possibility to 
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specify the name and color identifier of the created object. A signal containing these 
parameters is emitted by the dialog and processed by the Logic once the dialog is 
closed.  

When a Finding object is deleted using the combobox, the GUI widget emits a 
signal. This signal is then processed by the Logic and leads to the removal of the 
Finding from the active Report before it gets completely removed from the 
MRMLScene (Fig. 3.13.c). Provided that a Finding object has been successfully 
selected in the GUI, the user can trigger an ROI bounding box placing functionality. 
The interactive placing is executed with two subsequent clicks in one of Slicer’s 2D 
Slice Viewers. After a first click specifies the center of the ROI, a second click defines 
its extent. Recording and translating the position of those two clicks from the 2D Slice 
Viewers into the 3D image data coordinate system is also performed by the module 
Logic. Eventually, the resulting coordinates and radius values of the ROI are stored in 
the active Finding object (Fig. 3.13.d). 
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Fig. 3.13:  UML activity diagrams for the creation (a), selection (b) and deletion 
(c) of Finding objects and placing of ROI bounding boxes (d) in the 
third workflow step.  
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3.3.5  Increment 5 – Segmentation and SUV Calculation  

With the introduction of the Finding data structure in the forth increment, the 
foundation for the actual process of segmentation was laid in the previous build 
increment. By integrating Slicer’s Editor module into the module GUI, access to all 
advanced semi-automatic and manual segmentation tools that are available in the main 
application was granted. Since the objective of Finding objects is to represent a certain 
tumor or reference structure within image data from different time points, the module 
has to provide an interface for performing segmentations on the PET image volumes of 
each Study available in the active Report. In the fifth build increment the required 
data structure, GUI widget and Logic for realization of such interface was implemented. 

3.3.5.1 MRML Implementation 

Although the data structure for handling of segmentations is provided by Slicer in the 
form of label map volumes, the implementation of a new class that is capable of storing 
SUV statistics calculated for such label map volumes was required. For that reason, the 
new class vtkMRMLLongitudinalPETCTSegmentationNode (further referred to as 
Segmentation) was added to the module’s MRML classes. Besides the possibility to 
reference the unique identifier of a label map volume from a specific Study object, this 
class provides 10 further variables. Maximum, mean and minimum SUVs and the 
standard deviation of those as well as the volume (in cc and mm3) and total voxel count 
of the segmentation can be stored in a Segmentation object. Furthermore, the center 
coordinates and the radius of the ROI that has been used to limit the segmentation 
volume are stored in two three-data arrays similar to the ones used in the Finding 
class. The objective of the last new variable is to store the unique identifier of a 3D 
triangulated surface model of the segmented volume that is generated upon 
segmentation.  

For the support of the new Segmentation class the implementation of Finding 
required enhancement. Hence, a map32 variable was added, providing the internal data 
structure for connection of a Segmentation object to a specific Study object. In 
doing so, access to the Segmentation object, which has been generated for a specific 
Study in the context of a Finding, is granted to the module Logic.  
 

 
                                                
32 Data type composed of a collection of key and value pairs with unique keys 
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3.3.5.2 GUI Widget Implementation 

In contrast to the previous build increment, the interface for segmentation did not 
require the implementation of a new widget. By integrating the widget representation of 
Slicer’s Editor module into the module’s GUI, the requirements for a fully functional 
user interface for segmentation were automatically met. However, in the workflow of 
this module segmentations are performed on temporary label maps before they are 
copied to the target volumes. Hence, an additional button for confirming the 
segmentation results and triggering the copy process was added to the module GUI 
underneath the Editor module widget. 
 

 

Fig. 3.14:  Widget representation of Slicer’s Editor module integrated in the GUI 
widget for Finding creation and selection. 

 
3.3.5.3 Logic Implementation 

One of the great advantages of reusing the available functionality of the Editor module 
is the availability of program logic and tools for the process of segmentation. To 
leverage these possibilities in the module, the Logic is required to prepare the correct 
volumes for segmentation and afterwards process the results. The segmentation process 
starts once the user opens the built-in Editor module with its segmentation tools widget 
(Fig. 3.15a). When receiving the signal from the GUI that the segmentation tools 
widget has been opened, the Logic uses the parameters of the previously defined ROI 
bounding box to crop the PET image volume according to the ROI extents and zoom in 
on it in the 2D Slice Viewers. It has to be taken into account that the cropped sub-
volume is just a copy of the original one. Hence, a temporary label map volume with the 
same extents as the cropped volume is prepared for the following segmentation (Fig. 

Editor module 
segmentation 
tools widget 

Button for  
segmentation 
confirmation  

Button for 
opening / 
collapsing 

segmentation 
tools widget  



3.3  Implementation 59 

3.15c). As mentioned above, the Editor module provides the logic for the segmentation 
itself. Once the user has finished the segmentation on the temporary cropped volume, he 
can confirm and add it to the active Finding. When confirmed, the Editor’s 
segmentation tools widget is closed and the GUI emits a signal (Fig. 3.15b). This 
causes the Logic to paste the segmentation results from the temporary label map volume 
to the target label map volume of the active Study. Afterwards, the SUV statistics are 
calculated and stored in a newly generated Segmentation object. This object is then 
mapped in the active Finding. Finally, a 3D triangulated surface model of the 
segmented volume is generated and displayed in the 3D Volume Rendering Viewer of 
the main application (see Fig. 3.15c). 
 
 
 

 

Fig. 3.15:  UML activity diagrams for enabling (a) and disabling (b) of the 
segmentation mode and the actual processing of segmentations initiated 
from the FindingWidget (c). 

  

a. b. 

c. 
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3.3.6 Increment 6 – Report Overview 

Awareness of the current workflow state is a very important aspect when considering 
the usability of the PET/CT analysis module. In the sixth increment, a tabular widget 
was implemented providing overview over all available Study, Finding and 
Segmentation objects in the active Report. Moreover, quick selection of active 
Study and Finding objects is also possible with the help of this widget.   

3.3.6.1 GUI Widget Implementation 

The most distinctive feature of the GUI widget for Report overview, which is shown in 
Fig. 3.16, is its integrated fully interactive table. At the beginning, before Study objects 
have been selected for segmentation or Finding objects have been created, the table is 
empty.   However, each time a Study object is selected for segmentation, a column is 
added to the table. Following the same principle, a row is added to the table each time a 
Finding is created. To support quick selection of active Study or Finding objects, 
the GUI widget was implemented to emit signals when the user clicks on a column 
or row header.  

In order to indicate whether a Segmentation object has been generated for a 
Study-Finding constellation, the GUI widget also offers the possibility to fill cells 
with specific colors. A colored cell indicates that a Segmentation object has been 
generated for a specific Finding (represented by the cell’s row) on the image data of a 
specific Study, (represented by the cell’s column). In addition to that, every colored 
cell also provides a control that can be used for hiding or showing the 3D surface model 
of the segmented volume in the 3D Volume Rendering Viewer of the main application. 
Moreover, cells representing Segmentation objects can also display its SUV statistics 
in a tooltip when the mouse cursor is hovered over the cell. Statistical values are also 
displayed in the cells themselves but only one type of value can be presented at a time. 
However, the user has the possibility to define the type of value to be displayed from 
the selection control in the right upper corner of the widget. At the same time on the 
opposite side, in the left upper corner, a label is used for providing more specific 
information about the selected active Study. Similar to the GUI widgets implemented 
in previous increments, an information label is available in the top right corner, 
providing information about the widget’s functionality on mouse hovering.  
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Fig. 3.16:  GUI Widget for Report overview. In this example the widget presents 
the overview of a workflow with two analyzed Study and two created 
Finding objects. 

 
3.3.6.2 Logic Implementation 

Integration of the GUI widget for Report overview into the module required the 
enhancement of the Logic class with three slot methods. Two of these are connected 
to the respective signals for change of active Study and Finding. The third slot is 
responsible of handling changes in visualization of the 3D surface models of the 
segmented volumes, which can be displayed or hidden individually to increase the 
overview in the 3D Volume Rendering Viewer. 

3.3.7 Increment 7 – Qualitative and Quantitative Analysis 

In the penultimate build increment, the actual analysis functionality was added to the 
module. Two different types of analysis are realized in the Longitudinal PET/CT 
analysis module. The qualitative analysis provides the possibility to compare PET/CT 
image and segmentation volumes side by side in a 2D Slice Viewer grid. For the 
quantitative analysis, charts of the different statistical values are plotted and visualized 
using Slicer’s built-in chart viewer. For the realization of the seventh build increment, 
the implementation of a new GUI widget was required as well as the enhancement of 
the module Logic to handle the changes in visualization. 

3.3.7.1 MRML Implementation 

Support of individual comparison of analysis results required the enhancement of the 
Study class with an additional boolean variable and its access and modification 
methods. Adding of this variable allows individual labeling of Study objects in order to 
present or hide their image and segmentation data in the 2D and 3D visualizations of the 
analysis results. 
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3.3.7.2 GUI Widget Implementation 

The visual appearance of the GUI widget for results analysis is similar to that of the 
GUI widget for Study selection presented in section 3.3.3.2 (see Fig. 3.17). However, 
the table for Study object selection is fulfilling a different purpose here. By checking 
or un-checking the checkboxes in the different rows of the first column of the table, the 
Study objects represented by those rows are either selected or removed from 
comparison. In so doing, the widget is offering full support for individual comparison of 
the analyzed PET/CT studies. Switching between the qualitative and quantitative 
visualization of the analysis results can be done with the help of the two buttons at the 
top of the widget. The button at the bottom of the widget is responsible for initiating the 
export of the quantification results to disk. Information about this widget’s functionality 
can be obtained by hovering the mouse cursor over the label in the top right corner of 
the widget. 

 
 

 

Fig. 3.17:  GUI widget for quantitative and qualitative analysis and comparison. 

 
3.3.7.3 Logic Implementation 

Enhancement of the module Logic in the seventh build increment included the support 
of selection/removal of individual analysis results from comparison, switching between 
qualitative and quantitative analysis visualization and the export of quantification 
results to disk. When a Study object is selected for or removed from comparison a 
signal is emitted by the GUI widget, containing the object itself and the selection 
state. In the Logic, this Study object is modified according to the check state and the 
method responsible for visualization update is called (see Fig. 3.18c). The same method 
is also called when the analysis type is changed from qualitative to quantitative or vice 
versa.  
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Depending on the selected analysis type, either a 2D Slice Viewer comparison grid 
for the qualitative (see Fig. 3.18a) or a chart viewer for the quantitative analysis (see 
Fig. 3.18b) is visualized in the main application. While the 2D Slice Viewer grid 
displays the PET/CT image data and the corresponding segmentation volumes of all 
Study objects selected for comparison, the chart view is used to present plots of the 
analysis results. For the export of quantification results to disk, the Logic was enhanced 
to receive and process the according signal from the GUI widget. After a target file is 
specified with the help of a file dialog, a comma-separated-values file containing the 
result values is generated and saved to disk (see Fig. 3.18d). 

 
 

 

 

Fig. 3.18: UML activity diagrams for selection of qualitative (a) and quantitative 
(b), individual comparison (c) analysis and export of results (d) in the 
fifth workflow step.  

  

a. 
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3.3.8 Increment 8 – MRML Serialization and Module Settings 

Support of serialization and de-serialization of the data generated during a PET/CT 
analysis workflow as well as its interchangeability between different systems is an 
important objective of the Longitudinal PET/CT module. Furthermore, automated 
access to Slicer’s various advanced image data visualization settings can be of great 
help for the analysis workflow and increases the overall usability of the application. The 
implementation required to meet both above-mentioned goals was realized in the eighth 
build increment. Besides the enhancement of all MRML classes to support serialization 
and de-serialization, an additional GUI widget was implemented. This widget contains 
controls for module specific settings regarding 2D and 3D visualization, availability of 
volume rendering, 3D surface model generation and registration functionality as well as 
the interface for integrating external algorithms into the module. 

3.3.8.1 MRML Implementation 

The implementation of all module specific MRML classes (Report, Study, Finding 
and Segmentation) was completed in this last build increment. To do so, the methods 
for serialization, de-serialization, duplication and console output of the member 
variables had to be overwritten. These methods are all inherited from the base class 
vtkMRMLNode. By implementing them, it is ensured that they are compatible with the 
serialization process of the MRMLScene. The same applies for de-serialization of the 
data when loaded from disk. The methods for duplication of the module’s different 
MRML classes and for console output of their member variables are not necessarily 
required in the context of this work but were also implemented in order to provide full 
compatibility with the MRML-Library. 

3.3.8.2 GUI Widget Implementation 

Usage of Slicer’s vast 2D and 3D medical imaging visualization possibilities can 
beyond any doubt support the user in his decisions during the PET/CT analysis 
workflow. However, the manual modification of visualization settings can turn 
relatively quickly into a cumbersome endeavor especially when dealing with numerous 
image volumes. In order to remedy this circumstances, a GUI widget that can be used as 
an interface for automated switching between different PET/CT 2D and 3D 
visualization settings was implemented (see Fig. 3.19). Moreover, details of 
segmentation presentation, PET/CT image data registration and the method used for 
PET quantification can also be adjusted in this widget. In contrast to the previous 
presented GUI widgets, this one’s controls follow a vertical layout as they are aligned 
one below the other. Such layout was intended so that this widget can be used as an 
always-accessible sidebar panel, positioned besides the GUI widgets for the workflow 
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steps. The widget is divided into 5 different panels. The top panel provides the controls 
for PET image volumes 2D and 3D visualization presets. Selection between three 
different PET specialized color tables is possible. Moreover, controls for enabling or 
disabling the 3D volume rendering visualization of PET image data as well as triggering 
a spinning movement of it in the 3D Volume Rendering Viewer and modification of its 
opacity are provided. In the second panel, the selection from four different 
Window/Level presets for CT image volumes is supplied. Outlining of segmentations in 
the 2D Slice Viewers as well as the generation of 3D surface models for segmented 
volumes can be enabled or disabled in the forth panel. The fifth panel is concerned with 
the settings for registration of PET/CT image data in the analysis workflow. Finally, the 
last panel is the quantification settings panel. By clicking on the button in this last panel, 
a text input dialog is opened, offering specification of the CLI module that is 
responsible for the quantification of the loaded DICOM PET data. By using this 
interface, external developers can exchange the default PET quantification method of 
the module with their own algorithms.  

3.3.8.3 Logic Implementation 

Serialization and de-serialization of the module’s MRML classes is handled 
automatically by the main application, hence it did not require adaption of the module 
Logic. However, providing functionality for the module settings GUI widget required 
enhancement of the module Logic. New methods were implemented in order to be able 
to receive the various signals emitted by the GUI widget. Besides updating the 
variables, which are affected by setting modifications, the Logic also has the objective 
to save the current state of the setting controls to disk. This way the module can be 
started every time with the exact same settings it was closed after a previous execution. 
When stored on disk, unique identifier for the different settings and their respective 
values are written into a text-based file, which is provided by the main application for 
such purposes. 
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Fig. 3.19:  Module settings GUI widget. 
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3.4 Evaluation 

Following the finalization of a first stable release, efficiency of the workflow, 
reproducibility of analysis results and usability of the implemented module had been 
evaluated. The methods used for the evaluation of the listed parameters are presented in 
this section. 

3.4.1 Keystroke Counts Comparison 

Counting the keystrokes (in the following, the term keystroke is also used to describe 
mouse-clicks) that are required to perform a certain task is a well-suited method to 
measure the efficiency of a software workflow. In the context of the keystroke counts 
evaluation study presented here, the module realized in this work was compared to the 
PET/CT Fusion module from 3D Slicer 3 and the PET Standard Uptake Value 
Computation module from the current version. While the former is the PET/CT analysis 
module of the previous version of Slicer, the latter is a CLI module capable of single 
study PET quantification in the current version of Slicer. Comparison with the PET/CT 
Fusion module, which also has been examined in this project’s requirements analysis, 
helped to reveal whether the planned improvements for PET/CT analysis in Slicer could 
be achieved. Comparison with the PET Standard Uptake Value Computation module 
showed if PET analysis in a guided workflow is superior in efficiency to manual 
analysis using a CLI module.  

The protocol of the keystroke counts comparison in this work stipulated that three 
predefined tasks for PET analysis (see Table 3.4) had to be executed with each of the 
PET analysis modules. Based on the nature of these tasks, the amount of analyzed 
PET/CT studies could be included as a factor (n) into the keystroke counts formula and 
did not have to be determined beforehand. In so doing, the suitability of the different 
modules for longitudinal analysis could also be taken into account. 

Table 3.4: Keystroke counts evaluation tasks. 

Task 1: Loading of n PET/CT DICOM Studies from Slicer’s DICOM database. 

Task 2: PET/CT fusion visualization in 2D Slice Viewers with PET and CT image volumes from 
n loaded studies. 

Task 3: Quantification of a tumor and reference VOI using a predefined label map volume for 
each of the n PET volumes. 
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3.4.2 Quantification Results Reproducibility 

Quantitative assessment of tumors is less evaluator-dependent than qualitative 
assessment, as already mentioned in chapter 2.1.5. However, as long as it is not 
performed with fully automatic tools, quantitative assessment is still influenced by 
subjective factors. In addition to this circumstance, the experimental protocol of SUV 
computation is quite simple and far away from being a precise method for PET 
quantification. Nevertheless, to this day it is the only method that is applied for PET 
quantification in clinical practice. For that reason, criteria for treatment response 
assessment focusing on tumor SUV changes, e.g. from the European Organization for 
Research and Treatment of Cancer (EORTC), is based on empiric cutoff points (15%, 
25%, 50%) that categorize in which order of magnitude the metabolic activity has 
decreased, increased or if it remained stable (< 15% change in tumor SUV) [61].  

The goal of the assessment of quantification results reproducibility in this work was 
to evaluate the dimension of variability in PET analysis results from different 
evaluators. Based on the results from this evaluation it could be estimated whether the 
longitudinal analysis results produced by this work are precise enough to be applied to 
the above-mentioned criteria for treatment response assessment. The setup of this 
evaluation study contained of the following. 

• Evaluators:  8 evaluators, not specialized in PET assessment 
• Hardware: Apple Macbook Pro (Dual Core i7, 2.7GHz, OSX 10.7) 
• Dataset: 3 DICOM FLT-PET/CT head studies with brain tumor 

All evaluators who participated in this evaluation had to perform a 3-timepoint 
longitudinal PET analysis by using the workflow provided by the Longitudinal PET/CT 
module. For each study, the brain tumor had to be segmented in the PET volume by 
using the built-in segmentation tools of Slicer. The primarily used tool was the 
threshold segmentation, which in general obtains good results on PET images due to the 
high intensities of metabolic active tissue. Furthermore, a semi-automatic tool for 
removal of segmentation fragments not belonging to the segmented tumor (caused by 
the previous threshold application) has been used as well as a manual drawing tool for 
segmentation. Eventually, the computed minimum, mean and maximum SUVs of the 
tumors segmented at all three time points have been documented for each evaluator. 
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3.4.3 Usability Evaluation 

The usability of the implemented module was validated with a combination of heuristic 
evaluation, questionnaires and personal interviews. Two different groups of evaluators 
were involved in this evaluation. While one group was composed of clinical experts in 
the field of PET research, Slicer development experts formed the other group. Both 
groups were asked to apply usability heuristics to the PET/CT analysis workflow of the 
module. Feedback from the clinical experts group was collected in personal interviews 
after a detailed presentation of the workflow. For recording of feedback from the 
software developer group, questionnaires were handed out. These questionnaires 
contained free form text fields for notes concerning usability violations and additional 
questions designed to increase awareness of the most important heuristics (see appendix 
D). The use of two different experimental protocols was due to the limited time clinical 
experts could spare from their everyday work for this evaluation. However, as already 
mentioned in chapter 2.5.2, heuristic evaluation can be performed with very few 
evaluators. Studies have shown that approximately 70% of usability problems in a 
system can be found by heuristic evaluation with 4 and approximately 80% with 7 
evaluators [44]. These results confirm that even with two different experimental 
protocols for the two different evaluator groups, the heuristic usability evaluation 
conducted in this work had the potential to reveal at least 70% of usability problems.  

To provide an overview for the usage of the module, a screen-cast of a complete 
PET/CT analysis workflow has been recorded and made online accessible for all 
evaluators [62]. The complete setup of the evaluation is presented in Table 3.5. 

 

Table 3.5: Heuristic usability evaluation study setup 

 Clinical experts Slicer development experts 

Group size 3 4 

Preparation  Online video with workflow 
demonstration. 

Execution of 
the module  

Presentation of the workflow by the 
facilitator following the same 
execution procedure as in the online 
screencast. 

Hands-on usage of the module by each 
evaluator. 

Recording of 
usability 
violations 

Personal interview with the facilitator 
during presentation of the workflow. 

Questionnaire with free form text 
fields and additional questions for 
every workflow step. 

Final severity 
rating 

Reported usability violations from all 
clinical expert evaluators are 
summarized in a form and sent back 
for individual severity rating.  

Reported usability violations from all 
software development experts are 
summarized in a form and sent back 
for individual severity rating. 



 

 



 

 

4 Results 

In the following, an overview of the appearance and functionality of the GUI prototypes 
implemented based on the results of both requirements analysis iterations is given. 
Furthermore, this chapter is concerned with the results of the conducted validation 
studies.  

4.1 Mockups for the workflow based on initial requirements 

4.1.1 Workflow Step 1: DICOM Import and PET/CT Study Selection 

The intention of the first workflow step as to manage the import and selection of 
PET/CT data required for further segmentation and quantification. The module accepts 
only PET and CT data imported from Slicer’s DICOM database since quantification of 
PET data can only be realized with additional information from its DICOM header. 
Once a patient from the database is selected, the table is populated with entries of 
his/her different PET/CT studies (see Fig. 4.1). By checking or un-checking the box in 
the first column of a study entry in the table, the respective study is added to the 
workflow or removed from it. Once a study entry is checked, its PET and CT image 
data is loaded into the 2D Slice Viewers and the 3D Volume Rendering Viewer on the 
right-hand side. Fusion imaging and 3D volume rendering are used for the visualization. 
Based on the selection, the slider below the table is updated and shows the different 
acquisition time points of selected studies. Further, this slider allows a quick switching 
between the actually selected studies. Whenever a study in the workflow is selected by 
using the slider, the corresponding image data is shown in the viewers.  
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Fig. 4.1: Mockup for the DICOM import and study selection step of the 

workflow. 

 

4.1.2 Workflow Step 2: Defining Regions of Interest 

Narrowing down interesting structures for segmentation requires the use of regions of 
interest (ROIs). Organization of ROIs from the same or different structures across 
different studies can be implemented by using a three-leveled tree hierarchy. On the 
first level, a root node is representing the current workflow. The third level consists of 
the leaf nodes for the different ROIs. In between, the middle level of the tree is 
represented by a data structure, grouping ROIs, which are localizing the same structure 
at different time points. An example of the overall structure is shown in the tree view in 
Fig. 4.2. 
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Fig. 4.2:  Mockup for the ROI definition step. 

 

4.1.3 Workflow Step 3: Segmentation 

To achieve the second goal of this work, namely to create an extensible platform for the 
support of further developments in PET specialized registration, quantification and 
especially segmentation algorithms, the suggested segmentation possibilities in the 
mockup shown were kept rather simple. Therefore, only a double slider control for basic 
gray scale value based threshold segmentations was integrated (see Fig. 4.3). The need 
of various and diverse segmentation methods for the tool to be developed was evident. 
However, by presenting only a single segmentation method in this throwaway prototype 
the objective was pursued to improve the elicitation regarding essential and desired 
segmentation tools. In addition to the visualization in the 2D Slice Viewers, a 3D 
surface model of the current segmented volume of interest is presented in the 3D 
Volume Rendering.  
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Fig. 4.3:  Mockup for the segmentation step. 

 
4.1.4 Workflow Step 4: Analysis 

The last step in the workflow is the overall analysis of created segmentations and 
automatically computed quantification results. Two different types of views are required 
in this step since the visual inspection of segmentations is of a qualitative nature, 
whereas the analysis of uptake values is of a quantitative one. Visualization for the 
qualitative analysis is obtained by aligning the 2D Slice Viewers of each study next to 
each other thus allowing comparison at a glance. These viewers are aligned horizontally 
as shown in Fig. 4.4. To avoid an overflow of the screen when numerous studies have 
been added to the workflow, the individual selection of studies for comparison purposes 
is possible. This can be achieved by modifying the selection of the entries in the upper 
table, which is similar to the one from the first workflow step.  

Representing the computed quantification results in chart viewers is the main 
characteristic of the quantitative analysis view (see Fig. 4.5). Each of the vertically 
aligned viewers stands for a different study. Consistent to the functionality of the 
controls in the qualitative view, the individual selection of studies to be compared 
removes or adds the respective chart from or to the comparison. Below the chart 
viewers a summary of the workflow is presented, containing all analysis results 
obtained during the workflow.  
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Fig. 4.4:  Mockup for qualitative analysis view. 

 
 
 

 

Fig. 4.5:  Mockup for quantitative analysis view. 
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4.2 GUI Prototype Demo Application  

4.2.1 Prototype Refactoring 

In order to improve the understanding for the overall operation of the planned software, 
a second prototype with a fully interactive GUI and dummy data for the demonstration 
of an example workflow was implemented subsequent to the second iteration of the 
requirements analysis process. Screenshots of this prototype and its appearance in the 
different stages of the example workflow are presented in Fig. 4.6 and briefly explained 
in the following. 

At the beginning of every workflow a “Report” has to be created. Information about 
all data imported into or generated in a workflow are stored within this Report. Another 
noticeable change is the sacrifice of the wizard driven workflow organization. Each 
workflow step can be made visible with just one click, provided that all data required 
for the step to switch to is available. Since each step depends on the data prepared in the 
previous steps, unrestricted switching is only possible as soon as the selection of the last 
step is enabled.  
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Fig. 4.6:  Different workflow steps of the interactive GUI prototype: Report 
selection (a); Study selection (b), Finding creation/selection and 
segmentation (c), Analysis (d). 
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By design, only the GUI controls required for one workflow step are visible at a 
time. However, the slider for time point switching and the tree view for the “Finding” 
data structure have been detached from certain workflow steps where they were located 
in the first GUI mockups prototype. Both are permanently visible and maintain the same 
position in the user interface. Moreover, they offer a very convenient way for quick 
selection of specific studies and segmentations. The placement of ROIs has been 
bundled with the creation of Findings. The idea behind this approach was that every 
time a Finding is created, an ROI of predefined size is placed at the crossing point of the 
three 2D planes shown in the Slice Viewers. This ROI can then be adjusted manually. In 
Fig. 4.6 c), the controls of the third workflow step, where Findings are created or 
selected and segmentations can be performed using Slicer segmentation tools, are 
shown. Each Finding can contain no more than a segmentation per time point. GUI 
controls for the qualitative and quantitative analysis step of the workflow have not 
changed significantly, whereas the analysis visualization is planned to offer High-Low-
Close chart types and multiple 3D volume rendering viewers (see Fig. 4.7). 

 
 
 

 

Fig. 4.7: Visualization of the quantitative analysis including HLC-Charts for 
SUVs plotting and 3D volume rendering views of PET data and 
segmentations from every study / time point. 
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4.3 Keystroke Counts Comparison Results 

4.3.1 Loading of PET/CT DICOM Studies 

Based on the fact that loading of PET/CT studies from Slicer’s DICOM database is 
handled by a plugin in the newly implemented module (Longitudinal PET/CT 
Analysis), the number of keystrokes required for import is independent from the amount 
of loaded studies. In contrast to that, the keystroke counts for loading of PET/CT 
DICOM studies without the plugin (for the PET Standard Uptake Value Computation 
CLI module) shows a linear increase due to manual selection of the PET and CT image 
series for each study. The most keystrokes are required for loading PET and CT 
DICOM image series with the PET/CT Fusion module (see Fig. 4.8). This is mostly 
based on the fact that Slicer 3 does not provide a DICOM browser for quick and easy 
access to DICOM data, thus loading of image series has to be done manually by 
importing the image files located on disk.  

 

 

Fig. 4.8:  Results of the keystroke counts comparison for the first task: “Loading 
of n PET/CT DICOM Studies from Slicer’s DICOM database“. 

 
4.3.2 PET/CT Fusion Visualization in 2D Slice Viewers 

Automatic setup of PET/CT fusion visualization upon selection of a study in the 
Longitudinal PET/CT Analysis module limits the amount of keystrokes for such 
visualization to the amount of loaded PET/CT studies. However, the PET Standard 
Uptake Value Computation CLI module does not provide such selection and requires a 
cumbersome assignment of color lookup-tables for PET volumes and the manual 
selection of foreground and background images in the 2D Slice Viewers for each study. 
For that reason, the amount of counted keystrokes is significantly higher (see Fig. 4.9). 
As the name implies, the PET/CT Fusion module is more suitable for PET/CT fusion 
visualization, which is also reflected in its keystroke counts results for this task. 
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However, its results underperform compared to the newly implemented Longitudinal 
PET/CT Analysis module, especially as the number of studies is increasing. 

 

 

Fig. 4.9:  Results of the keystroke counts comparison for the second task: 
  “PET/CT fusion visualization in 2D Slice Viewers with PET and CT 

image volumes from n loaded studies“. 

 
4.3.3 PET Quantification  

Quantification of VOIs segmented from PET image data is the main purpose of all 
compared modules. However, only the Longitudinal PET/CT Analysis module was 
especially designed to facilitate longitudinal analysis. As seen from the diagram in Fig. 
4.10, the keystrokes required for single study quantification are equal or, respectively, 
differ by one. A noticeable difference only occurs when VOIs from multiple PET 
images are quantified. In this case, the Longitudinal PET/CT Analysis module has 
shown to perform better.  

 

Fig. 4.10:  Results of the keystroke counts comparison for the third task: 
“Quantification of tumor and reference VOIs using a predefined label 
map volume for each of the n PET volumes“.   
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4.4 Quantification Reproducibility Results 

The results of the quantification reproducibility study demonstrate the robustness of the 
quantification method used in this work and to which extent the preceding evaluator-
dependent segmentation process influences its results. All evaluators were able to 
generate the same maximum SUV for the tumors in all respective datasets. However, 
this optimal result is mostly due to the simple experimental protocol of maximum SUV 
estimation, in which the highest quantified segmented voxel represents this maximum 
value. On the contrary, the mean SUV derives from the totality of voxels in the 
segmented VOIs, thus is directly influenced by the individual segmentations of the 
evaluators. For that reason, reproducibility of mean SUV exhibited variability between 
3.67% and 4.69% in relation to the maximum tumor SUV of the baseline dataset and 
between 4.69% and 10.31% in relation to the maximum tumor SUV of each respective 
study (see Fig. 4.11 left). Similar to the estimation of maximum SUV, the minimum 
SUV in a VOI is represented by the lowest quantified voxel. However, the results in this 
study show that the minimum SUV could not be reproduced as optimal as the maximum 
SUV. This is mostly due to the fact that it is more likely to segment the highest 
quantified voxel, which is usually somewhere within an area of high SUV values, than 
the lowest quantified voxel, which will rather be found on the periphery of the VOI. In 
this study, minimum SUV reproducibility results exhibited variability between 2.54% 
and 4.26% in relation to the maximum tumor SUV of the baseline dataset and between 
4.26% and 8.91% in relation to the maximum tumor SUV of each respective study (see 
Fig. 4.11 right).  

Regarding the results that were normalized with the respective tumor SUVmax of each 
study, it becomes apparent that an increase of variability takes place from one dataset to 
the other (see Fig. 4.11 right). This trend is due to the characteristics of the image data 
used in this study. The overall tumor SUV is decreasing between the baseline and the 
follow-up studies (based on successful treatment). For that reason, the contrast of SUV 
values in the tumor region is reduced. Hence, differentiation between healthy tissue and 
tissue with increased metabolic activity becomes more complicated, which leads to 
more variations in the evaluator-dependent segmentation process. However, this study 
has been conducted with evaluators who were not specialized in PET assessment, thus it 
can be assumed that evaluators with expertise in PET analysis will most likely be able 
to achieve less varying results.  
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Fig. 4.11:  Results from quantification reproducibility evaluation with 8 evaluators 
and 3 head PET/CT image datasets, normalized with tumor SUVmax of 
Dataset1 (left) and tumor SUVmax of each respective dataset (right).  

 
4.5 Heuristic Evaluation Results 

The results of the heuristic usability evaluation are of a twofold nature. While the Slicer 
development expert group reported some minor usability problems, mostly related to 
the GUI, feedback from clinical experts group was focused more on additional desired 
capabilities. In the following, results from the usability problems severity rating and the 
feature request rating are presented. 

4.5.1 Slicer development experts usability problems severity rating 

The Slicer experts group used questionnaires to report usability violations. Inspection of 
this feedback revealed in total seven usability problems that the evaluators encountered 
during execution of the module. These problems were: 

1. Information labels in the top right corner of workflow step GUI widgets are too 
plain when colored gray. 

2. Access to the DICOM browser is only possible through the Slicer menu and not 
offered by the module’s GUI. 

3. The order of the GUI widgets for the subsequent workflow steps is not 
necessarily obvious from their arrangement.  

4. Loading of just the result presented by the PET/CT DICOM plugin always 
requires deselection of the additional results from other plugins that are selected 
by default too. 

5. Default enabled spinning movement of 3D volume rendering is remarkably 
slowing down the performance of the system. 

6. It takes a little to get used to the two-click ROI placing mechanism. 
7. The Report overview is not able to present all quantification results at once.  
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The severity of each one of the 7 summarized problems was rated by all 4 evaluators 
of the group using a severity rating scale for usability heuristics [48]. The result of this 
ranking demonstrates that from the 7 usability problems only 2 were considered to be 
real usability problems, while the others were rather ranked in between cosmetic and 
minor usability problems (see Fig. 4.12). 

 

Fig. 4.12:  Severity raking of the 7 summarized usability problems, performed by 4 
of 4 evaluators of the Slicer developer experts heuristic evaluation 
group. 

 
4.5.2 Clinical experts feature request rating 

Usability feedback from clinical experts was collected during personal interviews. As 
mentioned above, this feedback was more focused on usable features that are not yet 
implemented in the module than on usability problems. For that reason, all reported 
feature requests have been summarized to 6 feature requests: 

1. Calculation of SUVpeak
33 

2. Threshold segmentation tool based on percentage of SUVpeak  
3. Visualization of complete PET DICOM header  
4. Manual (rigid) image registration across timepoints 
5. Visualization of tumor growth/shrinkage comparison between studies 
6. Kinetic modeling support for dynamic PET imaging 

The clinical expert evaluators (2 of 3) rated the importance of each of these features 
for an elaborated PET analysis workflow. The majority of the requested features were 

 
                                                
33 More robust quantification method than SUVmax, in which a predefined ROI is placed around the 

maximum SUV or highest uptake region and the average SUV in this ROI results in the SUVpeak. 



 4  Results 

 

84 

rated as important enhancements or even crucial requirements for a correct PET 
analysis workflow (see Fig. 4.13). 

 

 

Fig. 4.13:  Feature importance raking of the 6 summarized feature requests, 
performed by 2 of 3 evaluators of the clinical experts evaluation group.



 

 

5 Discussion  

PET imaging has become a very important tool for oncology due to its potential to 
visualize metabolic activity and is increasingly used in clinical practice for diagnosis 
and staging of tumors. However, assessment of PET is predominantly carried out 
through simple visual inspection. Even though the importance of PET quantification is 
generally accepted, only simplified measures like SUV are used in routinely diagnosis 
and staging.  

In this work, a software tool has been developed with the goal to fulfill two purposes.  
First, a workflow is provided for the analysis of time-series PET image data. During the 
implementation of the tool, significant efforts have been made to ensure that said 
workflow is intuitive and efficient to use even for operators who are not specialized in 
the field of PET analysis. Second, interfaces were integrated into the software 
architecture in order to allow fellow researchers to use this tool as a platform for the 
prototyping and development of new PET specific quantification and segmentation 
algorithms. When extending the software with such algorithms, developers benefit from 
the fact that they can build up on the available workflow. This way, their focus lies on 
prototyping while data handling and visualization is provided by the underlying 
platform and supported by the workflow. Moreover, the tool implemented in this work 
is also well suited for validation of new quantification and segmentation methods by 
clinical evaluators. 

Validation of the software tool realized in this work has shown that an improvement 
in operational efficiency, compared to alternative tools for PET quantification in Slicer, 
has been achieved. Unfortunately, a similar efficiency comparison with a commercial 
system was not feasible in this work. Nevertheless, live demonstrations of PET 
quantification workflows in commercial systems (from Siemens and Hermes Medical 
Solutions) proved that there is no significant difference in efficiency between those 
tools. However, the commercial solutions offer more sophisticated segmentation and 
quantification methods than the ones provided in this work. 

Taking a closer look at the usability evaluation results, it becomes apparent that the 
prototype driven implementation of the software had a positive effect on the achieved 
usability. None of the evaluators reported a severe usability issue, which e.g. would bear 
the potential to make the software unusable for PET analysis. However, feedback from 
the clinical experts indicated that a few additional PET segmentation and quantification 
features need to be implemented in the future, in order to bring the tool on a similar 
level of functionality as it is offered by commercial solutions.  

In the quantification reproducibility validation study, an average variability of 3.84% 
was achieved when variations were considered in relation to the maximum SUV of the 
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baseline study. On that account, it can reasonably be concluded that the precision of 
quantification results offered by this work suffices for a basic assessment of treatment 
response. In particular because such assessment is usually done by comparison of 
quantification results from follow-up studies with the baseline-study, and empirical 
cutoff points for categorization are chosen relatively wide (15-25%). However, intra-
study mean and maximum SUV variability reached up to 10.34%, which is rather high. 
Based on the fact that the reproducibility study was performed by evaluators who were 
not experts in PET analysis, it can be concluded that most of the variability is due to 
missing expertise in PET analysis rather than to inaccuracies in the quantification 
methods. Future validation studies performed by evaluators with expert knowledge in 
PET analysis will have to show if intra-study mean and maximum SUV variability can 
be reduced to an adequate level. 

Probably the most relevant drawback of the implemented work at this stage is the 
lack of peak SUV (SUVpeak) assessment. When compared to maximum SUV (SUVmax), 
SUVpeak has shown to be more robust, due to the fact that it is less adversely affected by 
noise. Another issue might be seen in the use of a quantification method which is based 
on bodyweight normalized SUV. As presented in section 2.1.5, this SUV index has a 
relatively simple experimental protocol, and for that reason tends to be considerable 
inaccurate when it comes to comparison of quantification results from different patients. 
However, integration of algorithms for body surface area or lean body mass normalized 
SUV has its pitfalls too. The use of bodyweight normalized SUV is so widespread in 
clinical practice that the required additional parameters for estimation of body surface 
area or lean body mass SUVs are often missing in the PET DICOM data. Hence, there 
always remains the risk that such image data becomes incompatible with the software 
or, even worse, quantification might deliver false results. A possible workaround for 
this problem could be obtained by offering a fallback solution in form of bodyweight 
normalized SUV computation in case that required parameters for execution of the more 
sophisticated methods are missing.  

Considering the strategy for further development of the software, it would be best to 
continue with enhancement of the data structure to support SUVpeak assessment and to 
develop and integrate a new segmentation tool, which is capable to leverage this 
enhanced implementation. Next, integration of body surface area or lean body mass 
SUV computation methods should be considered in order to be able to provide more 
reliable quantification results. With these enhancements, the software can be brought to 
a level of functionality akin to the one offered by commercial PET analysis software.  

For further support of external developers, an enhancement of the available 
interfaces for integration of new algorithms should be taken into consideration. While 
the plugin architecture for extension of segmentation tools is provided by the 
implementation of Slicer’s Editor module, the interface for extension of quantification 
algorithms was implemented as a part of this work. External developers can submit 
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specific enhancement requests through the Slicer bug tracking system or by using the 
open mailing lists provided by the Slicer developer community. In summary, it can be 
said that the majority of the missing features and usability issues that were revealed 
during the evaluation of this work, can be implemented or fixed with relatively little 
effort due to the well-elaborated architecture of the developed software.  

5.1 Conclusion 

In conclusion, an extensible, free open source software tool for longitudinal analysis 
of tumor changes in PET imaging has been developed in this project. With its currently 
available default configuration, this tool covers the basic requirements for PET 
quantification.  Development and integration of more advanced PET segmentation and 
quantification methods can be implemented in the future by leveraging the extensible 
architecture of the software. 
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A Installation Guide 

 
This section presents the installation process of the Longitudinal PET/CT Analysis 
module using the Extension Manager in 3D Slicer 4. As a prerequisite for this 
installation, 3D Slicer 4 (version 4.2 or higher) needs to be installed first on a Windows, 
Linux or Mac OSX platform. Stable releases and nightly build installer packages are 
available via the Slicer download page34. 
 

 

Fig. A.1: Opening Slicer’s Extension Manager from the menu bar. 

 
In a first step, Slicer’s Extension Manager has to be opened using the menu bar of the 

main application. It is located in the “View” menu (see Fig. A.1). The user interface of 
the Extension Manager dialog is divided in two different tabs. For installation of new 
extensions, the “Install Extensions” tab needs to be opened. In there, all extensions 
available at the timepoint of opening the Extension Manager are presented. Installation 
of the Longitudinal PET/CT Analysis extension is initiated by clicking on the “Install” 
button located underneath its icon (see Fig. A.2). Thereupon, the installation is 
performed automatically in the background. When successfully installed, the application 
has to be restarted in order to be able to access the functionality of the newly installed 
extension.  

 
 
 
 
 
 
 

 
                                                
34 3D Slicer 4 download: http://download.slicer.org/ 
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Fig. A.2: 3D Slicer 4 Extension Manager “Install Extensions” view.  

 
 

In addition to the possibility for installation of the Longitudinal PET/CT Analysis 
extension using Slicer’s Extension Manager, the source code of this project is also 
available online and can be used to build the binary files of the software manually. The 
source files can be found at the web-based hosting service github35. The exact location 
of the repository used in this work is: https://github.com/paulcm/LongitudinalPETCT. 
 

 
                                                
35 GitHub: https://github.com/ 



 

 

B Documentation 

Documentation for the Longitudinal PET/CT Analysis extension for 3D Slicer 4 is 
available in the Slicer Wiki36. On this web page, a short description of the software, use 
cases and an overview of the different GUI panels and their use are given.  
 

 

Fig. B.1: Slicer Wiki page for the Longitudinal PET/CT Analysis extension 

Moreover, a screencast demonstrating the workflow of the Longitudinal PET/CT 
Analysis extension is also available online37.  

 

 

Fig. B.2: Screenshot of the workflow demonstration video. 

 
                                                
36 Longitudinal PET/CT Extension Documentation: 

http://slicer.org/slicerWiki/index.php/Documentation/Nightly/Extensions/LongitudinalPETCT 
37 Longitudinal PET/CT Extension workflow demonstration video: 

http://youtube.com/watch?v=O7Di6UZDsf0&feature=youtu.be 



 

 



 

 

C UML Class Diagrams 

 

 
Fig. C.1:  Detailed UML class diagram of the Model classes containing all 

attributes and public operations. 
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Fig. C.2:  Detailed UML class diagram of the View classes containing signal, slot 

and other public operations. 
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Fig. C.3:  Detailed UML class diagram of the Controller classes, composed of the 

main Logic class, its helper classes and the standalone DICOM plugin 
class. 

 
 



 

 



 

 

D Accompanying Questionnaire for Heuristic 
Evaluation 

 
Fig. D.1: First page of the questionnaire accompanying the heuristic evaluation. 
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Fig. D.2: Second page of the questionnaire accompanying the heuristic evaluation. 
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Fig. D.3: Third page of the questionnaire accompanying the heuristic evaluation. 
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Fig. D.4: Forth page of the questionnaire accompanying the heuristic evaluation. 
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Fig. D.5: Fifth page of the questionnaire accompanying the heuristic evaluation. 
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Fig. D.6: Sixth page of the questionnaire accompanying the heuristic evaluation. 
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Fig. D.7:  Seventh page of the questionnaire accompanying the heuristic 
evaluation. 
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Fig. D.8: Eighth page of the questionnaire accompanying the heuristic evaluation. 

 
 
Note:  The screenshots used in this questionnaire may contain some minor differences when compared to the GUI 

widgets presented in this work. This is due to the fact that the screenshots were taken from a preliminary 
development version of the extension. However, these differences do not affect the validity of the heuristic 
evaluation (see section 3.4.3) since only feedback from the free text answers were used in that one. 


