

Master Thesis

Quantification of longitudinal tumor changes using
PET imaging in 3D Slicer

Paul Mercea

Submitted to the Department of Medical Informatics in partial fulfillment of the

requirements for the degree of
Master of Science (M.Sc.) Medical Informatics

at the
Ruperto Carola University of Heidelberg, Germany

Submitted: July 2013

Presented by: Paul Mercea
 born: 10.05.1985

Referees: Prof. Dr.-Ing. Hartmut Dickhaus
University of Heidelberg

 Prof. Ron Kikinis, MD
Harvard Medical School

Declaration

I hereby certify that I have written this thesis independently, solely based on the
literature and other sources listed in the bibliography and properly cited in the text.

Matriculation no. University of Heidelberg: 2664607
Matriculation no. Heilbronn University: 176850

Heidelberg, 19.07.2013 ….…………...…………………...

 Paul Mercea

Abstract

Quantitative assessment of Positron Emission Tomography (PET) imaging can be used
for diagnosis and staging of tumors and monitoring of response in cancer treatment. In
clinical practice, PET analysis is based on normalized indices such as those based on the
Standardized Uptake Value (SUV). Although largely evaluated, these indices are
considered quite unstable mainly because of the simplicity of their experimental
protocol. Development and validation of more sophisticated methods for the purposes
of clinical research require a common open platform that can be used both for
prototyping and sharing of the analysis methods, and for their evaluation by clinical
users. This work was motivated by the lack of such platform for longitudinal
quantitative PET analysis.

By following a prototype driven software development approach, an open source tool
for quantitative analysis of tumor changes based on multi-study PET image data has
been implemented. As a platform for this work, 3D Slicer 4, a free open source software
application for medical image computing has been chosen. For the analysis and
quantification of PET data, the implemented software tool guides the user through a
series of workflow steps.

In addition to the implementation of a guided workflow, the software was made
extensible by integration of interfaces for the enhancement of segmentation and PET
quantification algorithms. By offering extensibility, the PET analysis software tool was
transformed into a platform suitable for prototyping and development of PET-specific
segmentation and quantification methods.

The accuracy, efficiency and usability of the platform were evaluated in
reproducibility and usability studies. The results achieved in these studies demonstrate
that the implemented longitudinal PET analysis software tool fulfills all requirements
for the basic quantification of tumors in PET imaging and at the same time provides an
efficient and easy to use workflow. Furthermore, it can function as a platform for
prototyping of PET-specific segmentation and quantification methods, which in the
future can be incorporated in the workflow.

Preface

This work is the documentation of my master’s thesis project at the Surgical Planning
Laboratory, a teaching affiliate of Harvard Medical School, located at the Brigham and
Women's Hospital in Boston, Massachusetts, USA. It was written for the Institute of
Medical Biometry and Informatics at the University of Heidelberg Germany.

Acknowledgements

First of all, I would like to thank Prof. Dr. Ron Kikinis for inviting me to conduct my
masters research at the Surgical Planning Laboratory in Boston and Prof. Dr.-Ing.
Hartmut Dickhaus for offering me the possibility to take this opportunity.

Thanks to Steve Pieper for his refreshing ideas and his helpful advises in the software
implementation part of this work. Thanks to Tina Kapur for her commitment to enforce
the team spirit by organizing social events.

Special thanks to Dr. Andriy Fedorov for being a great supervisor during my visit in
Boston and for supporting me with plenty of suggestions, great ideas and explanations
and for teaching me valuable lessons about the work as a researcher.

I am incredibly grateful for the persistent support and everlasting motivation by my
parents, Dorina and Peter Mercea, and my sister Petra Mercea, who were always there
for me. Very special thanks to my grandmother, Judith Miess, for her moral and
financial support throughout my entire studies. I wish to express my deepest gratitude to
Inga Hahn for her unconditional support during my time abroad and for always
believing in me.

Finally, I would like to acknowledge the University of Applied Sciences Heilbronn and
especially the Baden-Württemberg Stiftung for making the research presented in this
work possible by supporting my visit overseas with a Baden-Württemberg Stipendium
scholarship.

Contents

1 INTRODUCTION ... 1
2 FUNDAMENTALS .. 5

2.1 Positron Emission Tomography ... 5
2.1.1 Radioactive Tracing ... 5
2.1.2 Positron Emission .. 6
2.1.3 Coincidence Detection and Imaging .. 6
2.1.4 Combined PET and CT .. 8
2.1.5 Quantification of PET Data ... 9

2.2 The DICOM Standard .. 11
2.2.1 DICOM Information Model ... 11
2.2.2 DICOM Information Hierarchy ... 12

2.3 Medical Image Analysis Techniques ... 14
2.3.1 Image Data Visualization ... 14
2.3.2 Volume Rendering ... 15
2.3.3 Registration .. 16
2.3.4 Segmentation ... 16

2.4 The NA-MIC Kit ... 18
2.4.1 Common Toolkit .. 19
2.4.2 Visualization Toolkit ... 19
2.4.3 Insight Segmentation and Registration Toolkit ... 19
2.4.4 Qt Libraries .. 20
2.4.5 3D Slicer .. 20

2.5 Usability Engineering .. 24
2.5.1 Biomedical Software Usability .. 25
2.5.2 Usability Evaluation .. 26

3 METHODS ... 29

3.1 Requirements ... 31
3.1.1 Gathering of initial requirements ... 31
3.1.2 Prototyping the Workflow ... 34
3.1.3 Elicitation of Additional Requirements ... 34
3.1.4 Final Requirements .. 36

3.2 Design ... 37
3.2.1 Module Type Selection .. 38
3.2.2 Model Classes - MRML .. 39
3.2.3 View Classes - Widgets ... 41
3.2.4 Controller Classes - Logic ... 43	

Contents

X

3.3 Implementation .. 44
3.3.1 Increment 1 - Loading of PET/CT Data from DICOM Database 45
3.3.2 Increment 2 – Selection of Active Report Object .. 47
3.3.3 Increment 3 – Visualization of Image Data .. 49
3.3.4 Increment 4 - Creation and Selection of Findings .. 52
3.3.5 Increment 5 – Segmentation and SUV Calculation .. 57
3.3.6 Increment 6 – Report Overview ... 60
3.3.7 Increment 7 – Qualitative and Quantitative Analysis ... 61
3.3.8 Increment 8 – MRML Serialization and Module Settings ... 64	

3.4 Evaluation ... 67
3.4.1 Keystroke Counts Comparison ... 67
3.4.2 Quantification Results Reproducibility .. 68
3.4.3 Usability Evaluation ... 69

4 RESULTS ... 71

4.1 Mockups for the workflow based on initial requirements ... 71
4.1.1 Workflow Step 1: DICOM Import and PET/CT Study Selection 71
4.1.2 Workflow Step 2: Defining Regions of Interest ... 72
4.1.3 Workflow Step 3: Segmentation .. 73
4.1.4 Workflow Step 4: Analysis .. 74

4.2 GUI Prototype Demo Application .. 76
4.2.1 Prototype Refactoring ... 76

4.3 Keystroke Counts Comparison Results ... 79
4.3.1 Loading of PET/CT DICOM Studies ... 79
4.3.2 PET/CT Fusion Visualization in 2D Slice Viewers ... 79
4.3.3 PET Quantification ... 80

4.4 Quantification Reproducibility Results ... 81
4.5 Heuristic Evaluation Results .. 82

4.5.1 Slicer development experts usability problems severity rating 82
4.5.2 Clinical experts feature request rating .. 83

5 DISCUSSION .. 85

5.1 Conclusion .. 87

A INSTALLATION GUIDE .. 93
B DOCUMENTATION .. 95
C UML CLASS DIAGRAMS .. 97
D ACCOMPANYING QUESTIONNAIRE FOR HEURISTIC EVALUATION 101

List of Figures

2.1: Illustration of positron-electron annihilation .. 6
2.2: PET scanner coincidence detection .. 7
2.3: Different types of coincidence detections in a ring scanner ... 8
2.4: Representation of real world data as DICOM Information Object Definitions 12
2.5: Four-leveled DICOM Information Hierarchy. .. 13
2.6: Visualization of CT head data slices on axial, sagittal and coronal planes 14
2.7: Colored ray-cast volume rendering of the abdominal area ... 15
2.8: Segmentation in MITK 3M3 ... 17
2.9: NA-MIC-Kit software overview ... 18
2.10: System architecture and external library dependencies of Slicer 4 .. 21
2.11: Usability problems found by heuristic evaluation .. 27

3.1: Model of the customized software development method used in this project 31
3.2: Directions for development in software design .. 37
3.3: UML class diagram of the Model classes ... 40
3.4: UML class diagram of the View classes. .. 41
3.5: UML class diagram of the Controller classes. .. 43
3.6: Slicer main application GUI with empty Module Panel and PET/CT Fusion visualization 44
3.7: UML Sequence Diagram for loading of PET/CT DICOM studies into the MRMLScene. 47
3.8: GUI widget for active Report selection .. 48
3.9: UML Activity Diagram for active Report selection object in the first workflow step. 49
3.10: GUI Widget providing Study objects overview and selection possibilities. 51
3.11: UML activity diagrams for selection of Study objects ... 52
3.12: GUI Widget for creation and selection of Finding objects. .. 54
3.13: UML activity diagrams for the creation, selection and deletion of Finding objects 56
3.14: Widget representation of Slicer’s Editor module integrated in the GU .. 58
3.15: UML activity diagrams for segmentation enabling, disabling and processing 59
3.16: GUI Widget for Report overview. .. 61
3.17: GUI widget for quantitative and qualitative analysis and comparison. .. 62
3.18: UML activity diagrams for selection of qualitative and quantitative analysis 63
3.19: Module settings GUI widget. .. 66

4.1: Mockup for the DICOM import and study selection step .. 72
4.2: Mockup for the ROI definition step .. 73
4.3: Mockup for the segmentation step .. 74
4.4: Mockup for qualitative analysis view. .. 75
4.5: Mockup for quantitative analysis view. .. 75
4.6: Different workflow steps of the interactive GUI prototype .. 77
4.7: Visualization of the quantitative analysis ... 78
4.8: Results of the keystroke counts comparison for the first task .. 79
4.9: Results of the keystroke counts comparison for the second task .. 80
4.10: Results of the keystroke counts comparison for the third task. .. 80
4.11: Results from quantification reproducibility evaluation .. 82
4.12: Severity raking of the summarized usability problems. .. 83
4.13: Feature importance raking of the summarized feature requests ... 84

List of Tables

XII

A.1: Opening Slicer’s Extension Manager from the menu bar. .. 93
A.2: 3D Slicer 4 Extension Manager “Install Extensions” view. .. 94

B.1: Slicer Wiki page for the Longitudinal PET/CT Analysis extension ... 95
B.2: Screenshot of the workflow demonstration video. .. 95

C.1: UML class diagram of the Model classes .. 97
C.2: UML class diagram of the View classes ... 98
C.3: UML class diagram of the Controller classes .. 99

D.1: First page of the questionnaire accompanying the heuristic evaluation. 101
D.2: Second page of the questionnaire accompanying the heuristic evaluation. 102
D.3: Third page of the questionnaire accompanying the heuristic evaluation. 103
D.4: Forth page of the questionnaire accompanying the heuristic evaluation. 104
D.5: Fifth page of the questionnaire accompanying the heuristic evaluation. 105
D.6: Sixth page of the questionnaire accompanying the heuristic evaluation. 106
D.7: Seventh page of the questionnaire accompanying the heuristic evaluation. 107
D.8: Eighth page of the questionnaire accompanying the heuristic evaluation. 108

List of Tables

3.1: Initial requirements .. 33
3.2: Additionally elicited requirements .. 35
3.3: Final requirement ... 36
3.4: Keystroke counts evaluation tasks. .. 67
3.5: Heuristic evaluation study setup .. 69

Acronyms

2D Two-Dimensional
3D Three-Dimensional
API Application Programming Interface
CLI Command Line Interface (module type in Slicer)

CT X-Ray Computed Tomography
CTK The Common Toolkit
DICOM Digital Imaging and Communications in Medicine
GUI Graphical User Interface
ITK The Insight Segmentation and Registration Toolkit

MRI Magnetic Resonance Imaging
MRML Medical Reality Markup Language
MVC Model-View-Controller
NA-MIC National Alliance for Medical Image Computing
PACS Picture Archiving and Communication System

PET Positron Emission Tomography
ROI Region of Interest
SUV Standardized Uptake Value
UML Unified Modeling Language
VOI Volume of Interest

VTK The Visualization Toolkit
XML Extensible Markup Language

1 Introduction

Positron emission tomography (PET) has become an essential tool for the routine
diagnosis, staging and monitoring of tumors in oncology. Although its underlying
concept is relatively simple, more than 30 years of development and specialization were
required until it finally found it’s way out of the research laboratories into clinical
practice. Ever since, its importance within the field of clinical oncology has
significantly increased, not least because of its possibility to indicate malicious cell
growth, where other imaging modalities reach their limits. PET is a functional imaging
technique with the focus on detection of physiological activities. However, the
drawback of this technique is a modest anatomical imaging resolution. On the other
hand, anatomical and morphological imaging techniques like X-ray Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI), which are widely used in
oncology, offer high anatomical resolution but are not capable of imaging metabolic
activity. As a consequence, efforts were made to combine PET and CT scanners in
order to benefit from the advantages of both techniques and recently also the
combination of PET and MRI has been brought to market maturity.

In fact, PET is increasingly being used in cancer management but its potential
regarding quantitative assessment remains widely underutilized in clinical practice,
where diagnosis and staging of tumors are done either by visual inspection only or with
additional help of radiology workstation software tools. Quantification of PET image
data with these tools is almost exclusively done by application of the standardized
uptake value (SUV) indices [1]. The prevalence of SUV is based on its simple
experimental protocol, which allows quantification in a timely manner. The stability
and applicability of the SUV method in all its implementation forms has been discussed
extensively in literature (e.g. [2], [3], [4], [5], [6], [7]). Despite this, to date there still
does not exist a standardized protocol for the application of SUV. Nonetheless, the
benefits of using the SUV for quantification in clinical routine are currently bigger than
its pitfalls [8]. More sophisticated methods for PET analysis based on dynamic imaging
have also been developed in recent years [9], [10], [11]. However, these methods
require prolonged times of successive scanning with the consequence of decrease in
volume possible to scan. Considering these restrictions, said methods are not yet
suitable for application in a clinical environment.
With efficient but relatively unstable indices on the one hand and superior but too
sophisticated methods on the other, research in PET quantification has to aim for the
improvement of existing tools and also for the development of new ones. The aim is to
develop more reliable and at the same time effective techniques, and always leverage
new possibilities gained through technical progress. Thus, the development of new

1 Introduction

2

quantification algorithms and platforms for prototyping of those is required. These
platforms must function as a basis, offering PET imaging and analysis functionality, and
provide the possibility to be extended with new algorithms. Regarding these
requirements, commercial PET imaging systems are usually not appropriate for the
purpose of research and development since they often are neither extendable nor do they
support prototyping of new functionality. In contrast to commercial solutions, open-
source biomedical imaging software is especially developed for use in the academic
environment. Mostly publicly funded and implemented by research groups from the
field of biological or medical imaging, some of the freely available, open-source, non-
restrictive software frameworks have the capability to provide state-of-the-art medical
image visualization. Such frameworks ideally come with a decent selection of basic
image analysis tools and represent the fertile soil for the development and prototyping
of new algorithms for biomedical applications. From the various free and open source
software tools, available for medical image visualization and processing, we have
chosen 3D Slicer1 as the software platform for our project. Besides its impressive
visualization techniques of two, three and even four-dimensional (with time as the forth
dimension) data, versatile functionalities are provided by over 100 different modules
targeting almost every existing area in the field of medical image computing. With
support of the Digital Imaging and Communications in Medicine (DICOM) format,
advanced registration algorithms, easy to use segmentation tools and the possibility of
chart plotting, 3D Slicer offers all the tools required for a promising implementation of
our work.

The objective of this project is the development and evaluation of an open source
software tool for quantitative analysis of tumor changes from PET image data with
special focus on an elaborated workflow, meeting usability expectations of expert but
also non-expert users in the field of PET image analysis. An additional goal of this
project is to realize the implementation in a way that promotes extendibility of the
developed tool. This makes it suitable for other algorithm developers who are or will be
involved in the development and prototyping of PET-specific segmentation or
quantification methods. The following steps describe the activities that have been
executed during the development of this project.

First, a prototype driven requirements analysis was conducted in order to gather as
many requirements as possible from potential users, developers but also clinical
researchers. Second, the software architecture was designed with due regard to the
optimal arrangement of the data structure in order to avoid complications in the
subsequent implementation process and to streamline the same. In this project,
particular relevance was paid to the usability of the resulting tool and a well-engineered

1 3D Slicer: http://slicer.org/

1 Introduction

3

workflow. To achieve this goal, feedback from clinical and software engineering
experts was collected throughout the whole development process in order to ensure that
the orientation of the implementation is based on the requirements of the target user
group.
The presentation of the work done and results obtained in this project is given as
follows. In the next chapter, a brief overview of the underlying physical principles and
image acquisition techniques of PET is given. Then, fundamental image analysis
methods and the software frameworks and libraries involved in this work are shortly
described together with the concept of usability engineering and its evaluation methods.
In the following chapter, the methods that were used to implement and validate the
software tool are outlined. Interim results in form of software prototypes and final
results from the validation studies are presented in the penultimate chapter. Finally, the
last chapter discusses the result achieved in this project and provides an outlook on the
potential of further development of this work.

2 Fundamentals

Ever since its early days, the significance of medical imaging in diagnosis and therapy
has rapidly increased. Above all, this is due to the explosive development in quantity,
quality and diversity of medical imaging data and the benefits coming from the
continuous evolution of software and hardware used for analysis.

In this chapter, the fundamental principles of PET imaging as well as the
standardized protocol for medical imaging, fundamental image analysis methods,
software toolkits and implementation guidelines used for implementation of the
software in this project are presented.

2.1 Positron Emission Tomography

PET in clinical routine is a sophisticated procedure, which is performed by trained
personnel following a precise schedule. In the following, an overview of the basic
principles of radioactive tracing and positron emission and detection is presented. This
overview is mainly based on the works of Jadvar [12], Lynch [13] and Martinez et al.
[14]. Furthermore, current PET scanner configurations and methods for quantification
of PET data are outlined.

2.1.1 Radioactive Tracing

In preparation for a PET scan, a radioactive labeled chemical compound (radioactive
tracer) has to be produced in a cyclotron. Due to the relatively short radioactive half-life
of radioisotopes suitable for PET imaging, the cyclotron is required to be located on
site. The widest used radiotracer in current clinical routine is a fluorine-18 (18F) isotope
labeled glucose (18F-FDG – Fluorodeoxyglucose). Subsequently to its production, this
radioactive tracer is applied to the patient by intravenous injection. To ensure a
sufficient distribution of the tracer inside the body before the image acquisition, an
appropriate resting time is required but cannot take too long in regard to the radioactive
decay of the radioisotope. The radioactive tracer 18F-FDG is taken up and
phosphorylated by the human body in the same way as regular non-radioactive glucose.
However, instead of being converted into energy or stored as glycogen, 18F-FDG is not
undergoing any further reaction and remains trapped inside the cells where it gets
accumulated. Given the fact that malignant tumor cells have a higher growth rate than
benign ones, it is apparent that higher 18F-FDG uptake will take place in tumors. By
using a PET scanner, radioactive decay of the radioisotopes trapped inside the human
body can be registered. Thus, the location of tumors in PET images can be estimated

 2 Fundamentals

6

due to the fact that tumor cells generate a more intense signal when compared to healthy
ones [13].

2.1.2 Positron Emission

Positrons are basically positively charged electrons (antielectrons), produced by
unstable radioisotopes with an excess of protons. Based on their positron excess,
positron-emitting radioisotopes are neutron-deficient and gain stability through the
transmutation of a proton (P+) into a neutron (N). As a part of this process, a positron
(e+) and an electron neutrino (v) are emitted while the excess energy (E) of the decay
(kinetic energy) is shared between the positron and the neutrino in different amounts
[14]:

 𝑃! → 𝑁 + 𝑒! + 𝑣 + 𝐸 (2.1)

Outside the nucleus, the positron is highly unstable and follows a jagged path while it

is losing its kinetic energy by ionizing surrounding molecules when seeking to combine
with an electron (e-). This combination results in a positronium ion which is very short
lived because the antimatter positron and the electron annihilate each other (within 2
nanoseconds) [13]. As a product of the annihilation process, two gamma rays (γ) are
emitted in nearly opposite directions. Each one of these rays has an energy of 511 keV,
resulting from the annihilation of the resting masses of the positron and the electron (E
= mc2):

Fig. 2.1: Illustration of a radioisotope with positron excess emitting a neutrino
(v) and a positron (e+), which after a short distance travelled, interacts
with an electron (e-) resulting in an annihilation with emission of two
gamma rays (γ).

2.1.3 Coincidence Detection and Imaging

The almost back-to-back emitted gamma rays (photons) from the positronium
annihilation play the key role in PET. When those rays are detected at approximately
the same time by two different detectors on opposite sides of a detector ring, the
detectors are „in coincidence“ which means that the annihilation of the positronium
must have taken place somewhere in between them on a so called line-of-response
(LOR) [12]. Provided that the energy of the detected photons is above a certain lower

2.1 Positron Emission Tomography 7

level of 350-400keV, they are analyzed by a coincidence-processing unit. Signals from
opposite detectors that have been detected within a timespan of 4 – 12ns (coincidence
window) are registered as a true coincidence event [14].

Fig. 2.2: PET scanner coincidence detection. Photons, emitted back-to-back
during annihilation, are detected on opposite sides of the detector ring
and classified as true coincidence event by the coincidence-processing
unit. With the sum of all recorded coincidence events, a sinogram can
be generated. From this sinogram, a volumetric image is then
reconstructed in the end [15].

However, besides true coincidence events, scattered and random coincidence events
also exist and are registered too [12]. A scattered coincidence occurs if one or both of
the photons undergo scattering in the patient’s body. In contrast to a non-scattered one,
a scattered photon has less energy and changes the direction of its initial path. Assuming
that such photons still have enough energy to be detected and these detections happen to
be within the coincidence window, a coincidence event will be recorded although the
line-of-response will be displaced. Random coincidence events occur when only a
single annihilation photon reaches a detector while the other loses too much energy to
be detected. Said case may occur due to attenuation and other scanner-related
limitations. Assuming that two single photon detections occur within the coincidence
window, these detections will be recorded as a true coincidence although they occurred
independently. Recording of both scatter and random coincidence events results in loss
of anatomical resolution in the resulting PET image.

 2 Fundamentals

8

Fig. 2.3: Different types of coincidence detections in a ring scanner. The black
dot indicates the location of positron annihilation. From top left
clockwise: a true coincidence, a scattered coincidence with one photon
leaving its path, multiple coincidence with two positron annihilations
and three counted events and a random coincidence with two
annihilations and one counted event for each [16].

Based on the count rate of registered coincidences for each detector pair, line
integrals can be modeled forming a sinogram (analogous to CT imaging) which then
can be transformed into three dimensional (3D) image data using specialized image
reconstruction algorithms [17]. Although image reconstruction is a crucial step in the
generation of PET image data, it is beyond the scope of this work to provide further
details in this respect. Eventually, the recorded radioactivity (Bq/ml) is stored as scalar
values representing the different grayscale intensities of the reconstructed 3D image.

2.1.4 Combined PET and CT

Compared to CT images, PET images show a lower anatomical resolution, which can
affect the correct localization of lesions and demarcation of their borders. Moreover, the
contrast in CT imaging is based on the density of the tissue, while contrast in PET
imaging results from metabolical activity in the tissue. As a consequence, combination
of PET and CT imaging allows leverage of both imaging modalities’ advantages and
can provide a tool for accurate localization of functional abnormalities. However, such
combination requires a decent alignment of the PET and CT image data. In image
processing, such alignment is called registration.

2.1 Positron Emission Tomography 9

Image data is organized in a discrete coordinate system containing numerous
elements. In two-dimensional (2D) images these elements are called pixels and in 3D
image volumes they are called voxels. When acquired with standalone scanners, the
coordinate systems of PET and CT image data will most certainly differ from each
other. The reason for the difference can be manifold but the highest influence derives
from change of patient position between the scans. It is practically almost impossible
for a patient to maintain the exact same position when transferred from one scanner to
the other.

The goal of the registration process is to compensate these circumstances by using
software algorithms to transform one image data set into the coordinate system of the
other. Nevertheless, minimization of patient motion between scans is a key factor for a
successful registration. To cope with this requirement, the combination of PET and CT
scanners into a single device has been realized in the early 2000s [18]. In contrast to
standalone PET and CT scanners, such combined scanners represent an effective
approach for the acquisition of accurately registered images and are able to contribute to
the reduction of overall scan time by up to 40% [14]. The reason for this significant
improvement is based on the fact that the scans are acquired subsequently thus
minimizing the possibility of movement. Moreover, the patient is moved on an
automatic bed from one scanner to the other describing a linear, one-dimensional
translation that can be registered very fast and accurate by software algorithms.

2.1.5 Quantification of PET Data

Diagnosis and staging of tumors in PET imaging can be achieved through visual
inspection by an evaluator with expert knowledge in oncology and anatomy. This
approach is known as qualitative analysis. While it is a first-choice method for
identification of tumors, it is only suited to a limited extent when it comes to prediction
of treatment efficacy and assessment of treatment [8]. For such applications,
quantitative analysis is more appropriate since it provides the required objectivity. In the
context of this work, quantification describes the expression of imaged radioactive
tracer uptake in a measureable entity.

Several sophisticated quantitative methods for PET quantification [9], [10], [11],
[19], [20] have been presented over the past two decades. However, such methods have
a complex protocol and require a prolonged data acquisition procedure. Because of that,
these methods have not found their way into clinical routine yet. On the other hand,
simpler and less exact quantification methods, so-called semi quantitative indices, for
PET imagings are widely used in clinical practice today. The most accepted of those
indices is the Standardized Uptake Value (SUV) [1] which is easily applicable and
describes the ratio between the concentration of the injected radiotracer in a volume of
interest (VOI) and the injected activity (corrected for physical decay) normalized by a
normalization factor:

 2 Fundamentals

10

𝑆𝑈𝑉 =
𝑟𝑎𝑑𝑖𝑜𝑡𝑟𝑎𝑐𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑘𝐵𝑞𝑚𝑙)

𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑀𝐵𝑞)
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

 (2.2)

By using a normalization factor it is taken into account that the distribution of

radioactive tracer in the human body is strongly influenced by physique. Commonly
used normalization factors are body weight (bw), body surface area (bsm) and lean
body mass (lbm). While for the computation of body weight normalized SUV only the
patient’s body weight at the time of image acquisition is required (besides concentration
and injected activity), the body surface area has to be determined based on weight and
height of the patient by using approximation equations [6]. The lean body mass method
requires estimation of the wrist, waist and hip circumferences in addition to the patient’s
body weight [3].

On the one hand, the simplicity of the SUV indices makes them suitable for use in
clinical routine, while on the other hand this simplicity is causing instability of the
results. A strong positive correlation between body weight normalized SUV and the
body weight has been found [4], leading to overestimation of uptake in obese patients.
Additionally, both the weight-independent body surface area normalized SUV and the
lean body mass normalized SUV computation methods are also not specific enough to
allow comparability in multi center studies. This is because neither the time interval
between radiotracer injection and image acquisition nor scanner specific properties are
taken into account. Moreover, the SUV indices are less suitable for quantification of
PET data that was acquired using radioactive tracers with a distribution in the human
body differing from that of 18F-FDG. Thus, the conclusion is that, for the quantification
of PET imaging acquired with novel radioactive tracers, quantification methods with
different kinetic properties will be required in the near future [8].

2.2 The DICOM Standard 11

2.2 The DICOM Standard

In 1983, the American College of Radiology (ACR) and the National Electric
Manufacturers Association (NEMA) formed a joint committee to develop a standard
that would make communication in digital medical imaging independent of device
manufacturer in order to facilitate the development and expansion of picture archiving
and communication systems (PACS) [21]. Currently in its third version cycle, the
standard for Digital Imaging and Communications in Medicine (DICOM) consists of 18
parts (from 1-20, part 9 and 13 being retired) and had its last publicly available revision
in 2011. It is free and can be obtained from the official DICOM home page2, which is
maintained by the NEMA.

In digital medical imaging, DICOM provides all the required tools for the
diagnostically accurate representation and processing of collected data. By being an all-
encompassing data transfer, storage and display protocol, DICOM is well-suited to
cover all functional aspects of digital medical imaging [22].

The following two paragraphs give a brief overview of the structure of DICOM data
and the hierarchy that is used to organize it.

2.2.1 DICOM Information Model

The main challenge for the DICOM standard is to provide an infrastructure capable of
organizing the complex medical environment in a precise and device-independent way.
By using its own lingo, the DICOM standard specifies a set of Information Object
Definitions (IODs) which provide an abstract definition of real-world objects applicable
to communication of digital medical information [23, p. 46]. In DICOM, all real-world
data (patients, medical devices, images, etc.) are viewed as objects with respective
attributes. For example, a patient IOD could consist of attributes like name, ID number,
sex, age, size, weight, and so on. The transition from a real world patient to a patient
IOD is illustrated in Fig. 2.4. IODs represent collections of attributes and in general
contain as many of them as required to describe all clinically relevant information of a
real world object [22]. The totality of these attributes form the DICOM Data Dictionary,
which is listed in the sixth part of the standard [24]. The dictionary consists of over
2000 data attributes and ensures the consistency in naming and processing of those.
Once medical data is stored as DICOM Data Attribute it can be transmitted and
processed by various DICOM conform devices.

2 DICOM Standard: http://medical.nema.org

 2 Fundamentals

12

Fig. 2.4: Representation of real world data as DICOM Information Object
Definitions (IODs) [22].

Since clinical data comes in a wide variety of formats, the standard defines 27 basic

data types called value representations (VRs) [25]. Each value representation is
characterized by its two-character name, repertoire of allowed characters (for
alphanumerical values) and the maximum or fixed length of its actual value in bytes.
Depending on the type, data can be stored either as text or as binary representation.
While the text format is well suited for names, dates and other character strings, the
binary format is the first choice when it comes to encoding of single numerical values or
sequences, as is the case for image pixels.

Although this paragraph only provides a very brief overview of the DICOM
information model, one can easily understand the enormous potential it bears for precise
modeling of real world medical objects and the standardized exchange of captured data.

2.2.2 DICOM Information Hierarchy

In the DICOM standard, organization of the numerous attributes from the data
dictionary is realized with a four level DICOM information hierarchy. From top to
bottom these levels are Patient, Study, Series and Image (see Fig. 2.5). Each parent node
in the hierarchy can have one or multiple child nodes. For example, a patient may have
multiple studies when he has to undergo follow-up imaging for assessment of treatment
response. A study in turn may consist of one or more image series. The latter is the case
for multi-modality imaging techniques like PET/CT, in which image series from both
modalities are captured during one study. Eventually, each image series may also
contain more than one image.

In the implementation of the hierarchy, a key-level ID is assigned to each level. At
the Patient level, the “Patient ID” is used. It usually has the objective to identify a
patient uniquely in the system of an institution. On the level below, each study is
assigned a unique identifier called (UID) the “Study Instance UID”. The same applies
for the Series level where “Series Instance UIDs” are used to identify individual series.

2.2 The DICOM Standard 13

At the bottom level, each image has its own “SOP Instance UID” [22]. All of the above
mentioned unique identifiers are mandatory for any type of imaging with DICOM
conform devices. When properly used, they can significantly improve data
identification and facilitate hierarchical data searches, retrievals and transactions.

Fig. 2.5: Four-leveled DICOM Information Hierarchy with key elements (UIDs)
for identification of each level [22].

 2 Fundamentals

14

2.3 Medical Image Analysis Techniques

In a general sense, the purpose of this work is to support the analysis of medical images.
However, medical image analysis describes a broad field of numerous methods,
reaching from rather universal ones, suitable for application in common use cases, to
those designed for highly specific tasks. In view of this fact, the following sections
provide a brief overview of some medical image analysis techniques used for the
realization of this work.

2.3.1 Image Data Visualization

As a first step in medical image analysis, the binary stored image data has to be
presented in a way that is comprehensible for the examiner. For 2D image data, medical
imaging software follows the same principle as any software capable of displaying
images. Thus, the intensity values of the image pixels, stored as binary values in the file,
are displayed in a pixel grid on the monitor according to their order. Presentation
possibilities for 3D image data (consisting of a series of 2D image slices) are twofold.
One solution is to display its 2D images next to one another in a grid and in a
consecutive order similar to printouts of 3D image data. The second solution is based on
interaction of the examiner who has to navigate through the individual 2D image slices
of the 3D image data and only the selected image is displayed at a time.

Fig. 2.6: Visualization of CT head data slices on axial (red), sagittal (yellow) and
coronal (green) planes. The slice intersections are illustrated by the
colored crosshairs.

A characteristic of 3D image data visualization is the possibility to display it on three
different planes that are perpendicular to each other. In medical imaging applications
these planes derive from the anatomical coordinate system. The axial plane separates
the head from the feet while the sagittal plane separates left from right and the coronal
plane separates front from back. Normally one of those planes corresponds to the
acquisition plane (e.g. CT images are always acquired axially), so its visualized image
data derives directly from the image file. However, the specific 2D image representation
on the other two planes has to be calculated from the different 2D image slices before it

2.3 Medical Image Analysis Techniques 15

can be visualized. An example of how 3D image data is visualized on axial, sagittal and
coronal planes is shown in Fig. 2.6.

2.3.2 Volume Rendering

In the recent years, volume rendering has become a very popular visualization technique
for medical image data. On the one hand, this is due to the continuous improvement of
computer hardware and especially graphics adapters. On the other hand, it is also its
ability to display a discretely sampled 3D grayscale volume as a colorful, shiny and
more anatomical object what makes volume rendering so valuable. Once started as an
experimental technique in medical imaging, volume rendering has developed into a
useful tool for clinical practice [26]. Its fields of applications are manifold as it can be
used for noninvasive coronary imaging [27] as well as for surgery planning for living
liver donation [28] and many more. A volume rendering projection from abdominal CT
image data is shown in Fig. 2.7.

There exist several methods for obtaining a volume rendered 2D projection of a 3D
data set. The most straightforward is called “ray casting”. This method is also used in
this work for volume rendering of 3D PET image data. The basic principle behind ray
casting is to determine the value of each pixel in the projection by sending a ray through
the pixel into the scene and then evaluate the data encountered along the ray using a
specific function (ray function) in order to compute the resulting pixel value [29]. For
colored 3D volume rendering, an additional color transfer function is applied to estimate
the color of the computed pixel values.

Fig. 2.7: Colored ray-cast volume rendering of the abdominal area computed
from 3D CT image data.

In the case of volume rendering of 3D medical imaging, the scene consists of 2D
image data slices representing a 3D image and the data encountered along the way are
the scalar values of the voxels, which are used for computation in the ray function.

 2 Fundamentals

16

Volume rendering computation is a highly complex process and can be specialized
by far more parameters than presented above. However, explanation of those is far
beyond the scope of this basic introduction.

2.3.3 Registration

In medical imaging, registration describes the determination of a geometrical
transformation which is able to align points from one image data set of an anatomical
region of the body with corresponding points from another image data set of that same
region. As already explained in section 2.1.4, these image data sets will most certainly
differ from one another when not acquired subsequently with a single device.
Differences can be due to variations in patient positioning, changes of patient anatomy
(weight-loss, differently filled bladder, respiration, etc.) or varying acquisition settings
of the scanning devices (e.g. CT is always acquired in the axial plane while the
orientation of acquisition in MRI is arbitrary). However, for an accurate assessment of
changes between different single-modality image data, or a precise overlay of images
from different modalities, an appropriate alignment of those is worth striving for.

In general, image registration methods can be classified into three categories. Point-
based methods work with a priori identification of corresponding point pairs in both
images. Such points are called fiducials and are placed either at unique anatomical
landmarks or are provided by artificial markers that have been implanted before
acquisition of the images. When the required amount of fiducial pairs has been
identified in both images (min. 3 pairs for 3D images), the registration method can
estimate the geometric transformation that provides the best alignment. Surface-based
methods use surface boundaries of 3D anatomical objects to determine corresponding
surfaces in different images and calculate transforms for appropriate alignment. Finally,
intensity-based methods estimate the highest similarity of two different images based on
their voxel values alone. In the simplest form, an intensity-based registration method is
iteratively optimizing a registration transform based on a similarity measure.

Registration transforms calculated by registration methods can be divided into two
main categories. On the one hand, rigid transforms are geometrical transformations that
preserve all distances, straightness of lines, planarity of surfaces and nonzero angles
between straight lines (rigid transformations include translation, rotation and reflection
and combination of those). On the other hand, non-rigid transforms include scaling,
affine, projective, perspective and curved transformations [30].

2.3.4 Segmentation

Segmentation in medical imaging describes the process of partitioning an image into
contentual coherent segments by classification of pixels/voxels according to specific
criteria of homogeneity. In general, such segments correspond to different types of

2.3 Medical Image Analysis Techniques 17

tissues, organs or other task-related structures of interest. For classification, labels are
assigned to each pixel/voxel of an image. Labels holding the same value classify a
certain segment. For medical image analysis, segmentation is a useful technique since it
allows the estimation of surface and volume of certain structures and can be used for
generation of 3D surface models of the segmented objects, as shown in Fig. 2.8.

There are different approaches to segmentation, which in general can be
characterized as manual, semi-automatic and automatic segmentation. An operator with
expert knowledge in anatomy can perform manual segmentation by manually labeling
the images. Hereto, manual segmentation tools, similar to the different shape and free
hand painting tools in drawing software, can be used to apply the labels to the image
data. In semi-automatic segmentation, software algorithms are used for the
segmentation process but as the name of the method suggests, they require human
interaction in order to perform correctly. In most cases, a starting point or region inside
the object to be segmented has to be seeded or roughly outline so that the algorithm can
iteratively refine the segmentation. Automatic segmentation methods are designed to
perform without human interaction. They mostly rely on automatic contour and shape
detection and use parameterized shape templates which are deformed to match the
object to be segmented in the image [31], [32].

Fig. 2.8: Segmentation in MITK 3M33: MRI head data with tumor (a);
segmentation and volume assessment of tumor (b); 3D triangulated
surface model of the segmented tumor (c).

Although a myriad of different segmentation methods and algorithms have been
developed in the recent past, there is no single approach that can generally solve the
problem of segmentation for the variety of existing imaging modalities. However, the
most effective algorithms are obtained by customized combination of different
components. By tuning the parameters of these components for the characteristics of the
respective modality and features of the anatomical structure quite decent results can be
obtained [33].

3 MITK 3M3: http://mint-medical.de/productssolutions/mitk3m3/mitk3m3

 2 Fundamentals

18

2.4 The NA-MIC Kit

The National Alliance of Medical Image Computing (NA-MIC) is a multi institutional
alliance in the United States, created with the objective for the implementation of an
open-source infrastructure for the development and application of advanced imaging
technologies for interdisciplinary research in the field of biomedical imaging [34]. The
NA-MIC Kit4 provides well-developed tools for algorithm developers, software
engineers, and application domain scientists. These tools can be categorized into
programming toolkits, end-user application software and system infrastructure [35] (see
Fig. 2.9).

Fig. 2.9: NA-MIC-Kit software overview [36].

The majority of the toolkits used in this projects are elements of the NA-MIC Kit,
while all others are external packages provided by the open-source community,
meaning that the resulting software from this project will also be able to fulfill the open-
source philosophy of the NA-MIC.

In the following, an introduction of the NA-MIC programming toolkits and the end
user application software used in this project is presented.

4 NA-MIC Kit: http://na-mic.org/Wiki/index.php/NA-MIC-Kit

2.4 The NA-MIC Kit 19

2.4.1 Common Toolkit

The Common Toolkit (CTK)5 is an open-source library for biomedical image
computing, which in the words of its developers is: „developed with the objective to
provide support code for medical image analysis, surgical navigation and other related
projects“ [37]. Besides application-level DICOM support and specialized graphical user
interface (GUI) widgets6, CTK also offers a plugin framework and an automatic testing
framework for the development of new software applications.

2.4.2 Visualization Toolkit

The Visualization Toolkit (VTK)7 is an open-source, cross-platform development
platform for 3D computer graphics, image processing and visualization [29]. Besides
basic processing capabilities for image, surface and mesh-data, its main purpose is the
visualization of 3D image data using basic and advanced visualization algorithms.

VTK’s class library is implemented in C++ but also includes interfaces for
automated wrapping techniques, thus it is also accessible from interpreted programming
languages like Tcl, Pyhton and Java. The main characteristic of VTK is its event-driven
architecture, in which the program flow is determined by the occurrence of events.
Based on its sophisticated architecture, robust implementation and advanced image
processing and visualization functionalities, VTK is being used in several bio-imaging
software applications and is the basis of 3D Slicer, the software platform used in this
project.

2.4.3 Insight Segmentation and Registration Toolkit

The Insight Segmentation and Registration Toolkit (ITK)8 is an open-source, cross-
platform development framework well-suited for medical imaging related tasks [33]. It
provides algorithms especially for segmentation and registration of multidimensional
image data and serves as a platform for the development of new algorithms in image
analysis.

ITK is implemented in C++ with high emphasis on a generic programming style
using C++ template code. Since the main advantage of generic code is that its
functionality can be adapted to more than one data type, high modularity of the code
and high reusability are ensured. Due to the high modularity, connections of several

5 CTK: Common Toolkit, http://commontk.org
6 Widget: Reusable element of a GUI
7 VTK: Visualization Toolkit, http://www.vtk.org
8 ITK: Insight Segmentation and Registration Toolkit, http://www.itk.org

 2 Fundamentals

20

ITK components can be composed to form sophisticated pipelines for the processing of
complex image analysis algorithms.

2.4.4 Qt Libraries

The Qt libraries derive from an open-source, cross-platform application and user
interface development framework. With more than 800 classes [38] written in C++, this
framework provides an enormous breadth of functionalities suited for almost any
conceivable task in software development. One of the most important characteristics of
Qt is the fact that it makes use of a special code generator. It is included in the
framework and called the Meta Object Compiler (moc) [39]. This generator is used for
realization of Qt’s signal and slot mechanism [40]. Hereby, a simple implementation of
the Observer design pattern can be realized. Qt objects have the capability to emit
specific Qt signals upon certain events (e.g. when a button is clicked). Then, other Qt
objects with slot methods can receive these signals. Using the signal and slot construct
helps to create a powerful, type-safe and flexible communication structure for the
graphical user interface of an application.

2.4.5 3D Slicer

Currently in its forth version cycle, 3D Slicer (further referred to as Slicer) represents
the end-user platform of the NA-MIC Kit. Like the other components, it is a free, open-
source and cross-platform software package. Slicer’s binary installer packages for
Windows, Mac OSX and Linux platforms are available for download as well as its
source-code, targeting developers and compilation on other systems like Oracle’s
Solaris.

DICOM standard [41] support, VTK based visualization possibilities for two, three
and four dimensional image data, versatile processing and multimodal analysis
functionalities and a streamlined graphical user interface (GUI) form Slicer into a
powerful tool for medical image visualization and analysis while keeping the
requirements for its operation so low that even a nontechnical user is able to easily
operate the software.

The architectural concept of Slicer 4 describes a layer-based modular approach (see
Fig. 2.10). The lowest layer contains platform specific hardware and OpenGL drivers
for window management and rendering functionality provided by the host system. One
level above, programming and scripting languages together with toolkit libraries
provide higher-level functionality and abstraction for the upper level application and its
extensions.

Regarding the application itself, Slicer’s components can be categorized into the
application core, Slicer modules and Slicer extensions. The core implements the user
interface, data input and output functionalities and provides plug-in interfaces [42].

2.4 The NA-MIC Kit 21

Modules represent the plug-ins for those interfaces. Being dependent on the application
core, the modules’ objective is enhancement of the core functionalities. In contrast to
the modules, which are part of the application bundle, extensions are not part of the
application’s distribution. They function as external modules that can be integrated into
the application „on-demand“.

Fig. 2.10: System architecture and external library dependencies of Slicer 4 [42].

The core of Slicer 4 and the majority of the modules are implemented in C++. Due to
support of the scripting language Python9, so-called “scripted” modules have become a
promising alternative to modules written in C++. Their implementation is in many cases
more time-effective while drawbacks in computing performance are negligible. The
classes implementing the application core follow the Model View Controller (MVC)
design pattern, which requires a separation of the Model (data), View (GUI) and
Controller (logic). Communication between those three components takes place either
through direct access (Controller and View have access to Model) or through event
handling mechanisms (Controller and View react to changes in Model), which are
implemented following the Observer design pattern.

Data representation and organization in the Model is based on the Medical Reality
Modeling Language (MRML) library which provides application programming
interfaces (APIs) for the management of medical image data types, organization of
those in a tree structure and serialization in an XML-based data format, which is
suitable for exchange between different systems. Apart from the MRMLScene, which
represents the root of the tree structure, objects from the MRML library are referred to
as “nodes” since they all derive from the base class MRMLNode.

In Slicer 4, the GUI implementation is based on functionality provided by the Qt
toolkit libraries10 and on GUI widgets specialized for bio-medical imaging tasks,
available from the CTK library. The processing functionality in 3D Slicer is

9 Python Programming Language: http://python.org
10 Qt: http://qt.digia.com

 2 Fundamentals

22

encapsulated in the logic, where computation with data from the MRMLScene is
performed. Changes of the data structure in turn induce updates of the GUI elements
presenting the data.

The ongoing maintenance and development of 3D Slicer is carried out by a
community of more than 80 authorized developers worldwide [42] and supported by a
user community that can report issues on open mailing lists or bug tracking systems. In
addition to that, the stability of the software is tested on a daily basis for a variety of
platforms. Results of these tests are summarized and reported online11.

In the remainder of this topic an overview of the Slicer modules used for the
implementation of this project is given.

2.4.5.1 DICOM Module

Introduced with Slicer 4, the DICOM module12 represents the main user interface for
import of DICOM data into the application. Imported DICOM data, either from disk or
queried from a Picture Archiving and Communication System (PACS), is stored in an
SQLite13 based local database on the application’s host platform. The easy to use
DICOM browser GUI provides selection functionality and offers thumbnail previews of
the available data sets. Moreover, the module is supporting extension through plug-ins
which allows developers to implement new algorithms for customized DICOM data
import (e.g. simultaneous loading of coherent PET and CT datasets).

2.4.5.2 PET SUV Image Maker Module

Belonging to the category of quantitative modules, the PET SUV Image Maker module
is based on the Standard Uptake Value Computation module14. It provides functionality
for the SUV based normalization of PET image volumes. Besides the captured
radioactivity values stored in the pixel data of the image volume, additional information
from the PET DICOM files is also required. When executed, the SUVbw value for each
voxel from the original image is computed and stored in the respective voxel of the
output image volume.

11 Slicer CDash project: http://slicer.cdash.org
12 DICOM Module: http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/DICOM
13 SQLite: http://sqlite.org/
14 SUV Computation Module:

http://slicer.org/slicerWiki/index.php/Documentation/4.0/Modules/PETStandardUptakeValueComputation

2.4 The NA-MIC Kit 23

2.4.5.3 Volumes Module

Changing the appearance of volumetric image data in 3D Slicer requires functionalities
from the Volumes module15. Besides the selection from a vast range of predefined
lookup tables, modification of Window/Level settings as well as threshold functionality
are available. Adjustment of image data plays an important role in PET/CT fusion
imaging where application of a suitable colored lookup table to the PET image and task
appropriate Window/Level settings can have a remarkable impact on the appearance of
the fusion.

2.4.5.4 Volume Rendering Module

Fully interactive 3D visualization of volumetric image data can be initialized and
adjusted using the Volume Rendering module16. As already mentioned in section 2.3.2,
3D volume rendering is a sophisticated technique. On the one hand it provides versatile
visualization possibilities and on the one hand it requires high computational
performance. For that reason, proper adjustment of the numerous parameters, involved
in volume rendering computation, is very important in order to obtain adequate
performance while maintaining reasonable hardware requirements. Considering these
facts, the Volume Rendering module offers, amongst others, the selection of different
CPU or GPU based volume-rendering techniques, interactive limitation of the rendered
volume and various opacity and color mapping settings. Due to these possibilities,
advanced volume rendering of complex 3D structures can be made available even on
non high-end computation platforms.

2.4.5.5 Editor Module

A variety of tools for manual or semi-automatic segmentation can be found in Slicer’s
Editor module17. The selection ranges from simple voxel based painting tools, over
more advanced dilation and erosion effects, right up to sophisticated segmentation
algorithms like the GrowCut [43]. Segmentations generated with the Editor module are
stored in so-called label map volumes, which then can be used for postprocessing like
generation of 3D triangulated surface models or quantitative analysis. Similar to the
DICOM module, the architecture of the Editor module also supports extension by plug-
ins. Developers can implement their own segmentation algorithms and easily integrate
them for validation.

15 Volumes Module: http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/Volumes
16 Volume Rendering Module:

http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/VolumeRendering
17 Editor Module: http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/Editor

 2 Fundamentals

24

2.4.5.6 Model Maker Module

As mentioned above, segmented image data can be used to generate 3D triangulated
surface models, wherefore the functionality of the Model Maker module18 is required.
Models, created with the Model Maker, can be displayed simultaneously with 3D
volume rendered image data. This functionality allows advanced visualization of
segmented volumes in an anatomical context.

2.4.5.7 Label Statistics Module

Label map volumes storing segmentation results can be used not only for surface model
generation, but also for calculation of statistics for the volumes classified by the labels.
In Slicer, the Label Statistics module19 provides such functionality. Currently supported
statistics are, the total amount of voxels in a segmented volume, its volumetric extent in
mm3 or cubic centimeters and the minimum, maximum, mean and standard deviation of
the segmented voxel gray scale intensities. Moreover, the possibility of plotting these
statistics by using Slicer’s charting functionality or exporting them in a text file is also
provided.

2.5 Usability Engineering

The increasing importance of computers in everyday life came along with increasing
requirement of human-computer interaction. Study of such interaction is a main
discipline in the scientific field of usability engineering, which is concerned with the
development of human-computer interfaces with high usability. In general, usability of
a hardware or software system refers to an effective and efficient accomplishment of
tasks, performed with human interaction. Nielsen [44], one of the major usability
engineering researchers named five attributes which can be regarded as quality
components of usability [45]:

1. Learnability: How easy it is for new users to accomplish basic tasks the first
time they encounter a new system?

2. Efficiency: Once users have learned the system, how quickly can they perform

tasks?

18 ModelMaker Module: http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/ModelMaker
19 Label Statistics module:

http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/LabelStatistics

2.5 Usability Engineering 25

3. Memorability: When users return to the system after a period of not using it,
how easily can they reestablish proficiency?

4. Errors: How many errors do users make, how severe are these errors, and how

easily can they recover from the errors?

5. Satisfaction: How pleasant is it to use system?

2.5.1 Biomedical Software Usability

Medical imaging has become the backbone for diagnosis in many medical disciplines
and modern medicine cannot exist without it. The development from simple x-ray
scanners, producing single images per scan, to sophisticated imaging modalities like
CT, MRI, PET and others, which usually generate large amounts of digital images, has
brought along the necessity for systems to post process those images. There are two
main user groups for medical image analysis systems. On the one hand, radiologists and
specialized medical personnel use commercial analysis workstation as approved clinical
devices for diagnosis and staging of diseases and assessment of treatment response.
Researchers, however, have different objectives and require more flexible solutions than
the commercial ones. For that reason, numerous algorithms and several software
packages for the visualization and analysis of medical image data have been
implemented by academic groups and in many cases made freely available for research,
private and sometimes even commercial use. While users of commercial systems are
trained for the correct usage of the installed software, private users and researchers not
involved in the development of the software often have to learn the correct usage by
themselves. Furthermore, software created by research groups is often used only for
their own work, and often no efforts are undertaken to share their software with other
research groups. This leads to redundant efforts when other groups intend to implement
similar or identical algorithms. To avoid this redundancy and the waste of effort,
academic software developers should always aim for the implementation of software in
such a manner that it is also usable for people outside their research group. To achieve
this goal, certain criteria have to be met. Carpenter et al. [46] have defined key criteria
for development of bio-imaging software, which of course can also be applied to
medical imaging software, not at least because these are also considered good practice
in general software development. In the sense of the authors, bio-medical imaging
software should be:

 2 Fundamentals

26

• User-friendly: Non-experts should be able to use the software, meaning that
detailed help and documentation are a necessity as well as availability of open
mailing lists, forums and installation routines for different computer platforms.

• Developer-friendly: Open-source licensing, well implemented, up to date
available source-code and detailed documentation are key factors for academical
software development.

• Interoperable: Dividable into several degrees, interoperability can be either

implemented quite simple by providing the ability to read certain file formats
across different systems or can get up to the seamless integration of one’s
software package functionality into another.

• Modular: Software modules, designed to solve a specific problem, can be
combined with modules solving other problems by implementation of the same
interfaces. Modularity is a very powerful tool for the development of software
with a high level of customization possibilities, thus enabling the applicability in
different domains.

• Validated: Extensive testing is the foundation for stable software and especially
in domains like biomedical imaging, where results can be crucial for further
decisions, software has not only to be tested but results have to be validated
against reference results. Hence, the distribution of input data and its test results
can help the user to validate whether the software is working correctly.

It is understandable that detailed implementation of the above listed criteria might
not be possible for every software development project and research group. However,
consideration of these criteria and their implementation to a certain degree can certainly
improve the usability of the software for outside-users and increase the availability of
the algorithms to external developers.

2.5.2 Usability Evaluation

Improvement of a system’s usability can only be realized by the analysis of its current
status of usability. Hereby, usability flaws can be detected and counter-measures can be
taken to eliminate them. Empirical methods for the measurement of usability can be
categorized as follows:

2.5 Usability Engineering 27

• Timing: Regarding the time users need to perform predefined tasks, conclusions
can be drawn regarding efficiency, learnability and memorability of a system.

• Counting: While counting the required keystrokes for the performance of a

certain task can help to measure its efficiency, counting of problem occurrence
during a human-computer interaction can deliver useful information about the
error-proneness of a system or difficulties regarding its learnability.

• Polling: Questionnaires addressing usability factors can help to gather users’

opinions on the usability of a system. This is a useful method for getting
feedback about the subjective satisfaction. However, there is only little
correlation to the objective performance.

2.5.2.1 Heuristic Evaluation

In addition to the described usability measurement techniques, additional identification
of usability issues can be achieved by the usage of a usability engineering technique
called „heuristic evaluation“. It is cost-effective, easy to learn, easy to use and can be
conducted with only a small set of evaluators, since the proportion of found usability
problems to number of evaluators stagnates relatively quickly (see Fig. 2.11). In order
to perform a heuristic evaluation, evaluators have to apply a set of usability heuristics to
a system, in order to identify violation of those and in the end assess their severities.

Fig. 2.11: Usability problems found by heuristic evaluation as a function of the
number of total evaluators (average results from six studies) [44].

 2 Fundamentals

28

Heuristic evaluation belongs to the branch of usability inspection methods which, in
contrast to the empirical methods, are based on the evaluator’s informed intuitions about
interface design quality [47]. Nielsen described ten heuristics a good interface design
should follow [44]:

1. Simple and natural dialog
2. Usage of the users’ language
3. Minimization of user memory load
4. Consistency
5. Feedback
6. Clearly marked exits
7. Shortcuts
8. Good Error Messages
9. Prevention of errors
10. Help and Documentation

While the above-listed heuristics represent a solid foundation for an evaluation, they
can be altered and extended for the use in a more specific environment [48]. One of the
main advantages of heuristic evaluation is that it can be conducted very early in the
interface design process since it is applicable to paper and/or electronic mock-ups as
well as to already implemented systems. However, a major drawback of heuristic
evaluation is that predicted problems may not be congruent with actual problems. This
is due to the rather simple implementation of the method and the fact that results are
based on the intuition of the evaluators. As a consequence, false problems may be
detected on the one hand and real problems may be missed on the other hand. In
literature, a maximal usability problem hit rate of 50% per evaluator is described [49].
Nevertheless, based on the subjective nature of this method, different evaluators will
most likely tend to find different problems, thus enabling the achievement of better
performance through aggregation of all results.

3 Methods

Following established software development methods is considered good practice and
helps to streamline the software development process. While this may not be of high
importance for individual developers, it is very crucial for projects requiring teamwork.
It lies in the responsibility of the developers to adopt the most appropriate method for
their task and if required, to modify or even combine it with others from the pool of
software development methodologies. Process models illustrate the procedures needed
for implementation of those methods. While the early ones were of a linear nature and
stipulated sequential processing (e.g. pure Waterfall model [50]), iterative and
incremental approaches (derived from the generic Spiral model [51]) were designed for
more flexibility in the software development process.

For professional software developers, the advantages of using approved methods for
the development process is beyond any doubt. However, the requirement for detailed
and accurate specification and documentation, associated with such development
methods, is often seen as an obstacle. Not only is it slowing down the innovation
process in a project; it also compromises the possibility to react to spontaneous changes
of requirements. For this reasons the Agile Movement has come into being with the
Manifesto for Agile Software Development20. The main objectives of agile development
are concerned with the emphasis on team relationship, deployment of well tested and
working software, close collaboration with clients and the ability to react to changes in
requirements during the development process life-cycle [52]. To enforce these efforts,
agile development methods (e.g. eXtreme Programming (XP) [53] and Scrum [54])
typically have an iterative structure, propose the work in small groups (6-8 people),
refuse detailed documentation and promote a strong involvement of the customer into
the development [55]. The popularity of agile methods is mainly due to the rapid growth
in the web-based software and mobile application industry, where fast and nimble
software development processes are crucial to keep up with client demands and new
technologies. However, there are more than a few software development methods, and
the selection of the most suitable one for a specific project has to be done carefully
since taking wrong decision can easily lead to increased costs or even failure.

Under the conditions of this project, with limited resources in development personnel
and a timeframe of approximately six month, the selection of an appropriate software
development model was relatively restricted. Slicer extensions are mostly developed in
an agile way by the developer community and documentation is preferably provided via

20 Manifesto for Agile Software Development: http://agilemanifesto.org

 3 Methods

30

the 3D Slicer Wiki pages21. The main purpose of these extensions is to support novel
research methods, thus implementation requirements are often not completely identified
before the coding process. For this kind of software development the agile approach is
well suited but also entails the risk of not being able to predict a concrete timepoint for
finalization. To avoid this problem, the execution of a pure linear development model in
which the required functionality is estimated realistically based on available resources,
and not modified during the coding process, is a promising option. However, this
procedure aggravates the second goal of this project to create a platform for the further
development and prototyping of PET-specific algorithms. For the realization of such a
platform, the ability to react to additional feature requests and to incorporate new
available Slicer functionalities (if feasible in the context of the work) is of central
importance. Hence, the development methods could not be too rigid so that they would
prevent any subsequent modifications. In order to cope with these requirements, the
software development processes of this work followed a modified Waterfall model with
iterative and incremental methods. Furthermore, prototype driven approaches were
incorporated for a better understanding of the main requirements.

An illustration of the modified Waterfall model used in this work is shown in Fig.
3.1. In this model, iterative interactions against the process flow are possible only
between the design and implementation level and after the evaluation step. This
precaution was taken in order to prevent additional specification of requirements once
the software design phase started and before a preliminary version of the software was
implemented. The possibility to alter or extend requirements is re-enabled after the
evaluation of the implementation, which can be used to refine functionality. The
implementation itself is based on the incremental build methodology. Functionalities are
implemented subsequently offering the possibility to correct errors made in the design
phase at relatively low costs since only increments affected by retrospective design
changes need to be fixed. In contrast to the software development life cycle, which
usually ends with the maintenance process, this project ended with the distribution of a
functional extension for Slicer 4.

In the following, the processes performed during the realization of this work, based
on the flow of the applied software development method are presented.

21 3D Slicer Wiki pages: http://slicer.org/slicerWiki

3.1 Requirements 31

Fig. 3.1: Model of the customized software development method used in this
project. Iterative interaction is permitted between design and
implementation levels and after the evaluation. Implementation is
performed incrementally. Distribution of the final product marks the
end of the project.

3.1 Requirements

Requirements engineering is a subfield in software engineering, concerned with the
process of formulating and documenting requirements in software development.
Software project requirements are often categorized in two groups. First, core
functionality requirements include the mandatory properties of the system. Second,
ancillary, or non-functional requirement cover optional features that supplement the
core functionality [56].

Late incorporation of features that derived from requirements, which were missed at
the time of analysis, is one of the main reasons for delays in software development. To
reduce these risks, a mock-up driven requirement analysis was conducted in this project.
The results from the initial requirements analysis process iteration were used to develop
clickable mock-ups of the planned user interface. By using these mock-ups in an
additional requirements analysis iteration, it was aimed to improve the yield of
requirements gathering and optimize the development process.

3.1.1 Gathering of initial requirements

Chemutury [56] describes the activity of requirement gathering as a combination of
elicitation and gathering. Elicitation is the collection of information from users, experts
and persons directly concerned with the project. Gathering describes the indirect
collection of information from sources like documents and existing applications.

 3 Methods

32

During the initial aggregation of requirements for the software to be developed, the
features of two existing Slicer modules were examined. First, the PET/CT Fusion22
module from 3D Slicer 3 [35], [57] was looked at. As the name suggests, this module is
capable of fused visualization of PET and CT image data. Moreover, it provides
bodyweight normalized SUV computation for multiple segmented VOIs in one PET/CT
dataset. Subsequently, the Change Tracker23 was examined. A characteristic of this
module is its multi-step workflow that guides the operator through a series of parameter
input panels before quantification is performed. These workflow steps are as follows.
First, two different image data sets, for which changes should be tracked, need to be
specified as baseline and follow-up scan. Afterwards, a region of interest (ROI)
bounding box is placed around the changing structure of interest. This structure is then
segmented in the baseline scan during the third workflow step. A segmentation with the
same parameters is later applied to the follow-up scan. The fourth step is concerned
with registration and analysis of the segmented volumes from both scans. Therefor,
several settings for difference metrics may be made in the input panel. Finally, the
volumetric quantification results are presented on the panel of the last workflow step.

In conclusion, examination of both modules revealed that several functionalities
might be useful for the implementation of this work. However, none of the modules
could be easily extended to realize a tool for longitudinal quantification of tumor
changes using PET imaging. While the PET/CT Fusion module has basic PET
processing capabilities, it does not support the simultaneous analysis of multiple studies.
Whereas the Change Tracker module supports longitudinal analysis but is not designed
to function as a tool for visualization and quantification of PET/CT data. As a result, a
module that has to be capable of both PET quantification and longitudinal analysis
needs to combine the key functionalities from both examined modules.

To extend the field of vision for useful requirements and avoid being too restricted
on the available capabilities and methods of Slicer in the early stages of the
requirements analysis, the functional principles of longitudinal PET analysis in a
commercial system have also been evaluated. By participation in a live demonstration
of the PET/CT analysis workflow syngo.via24 (Siemens), important insights about
clinical PET analysis were gathered.

22 PET/CT Fusion module: http://slicer.org/slicerWiki/index.php/Modules:PETCTFusionDocumentation-

3.6
23 ChangeTracker module:

http://slicer.org/slicerWiki/index.php/Documentation/4.2/Modules/ChangeTracker
24 syngo.via: http://healthcare.siemens.com/medical-imaging-it/clinical-imaging-applications/syngovia

3.1 Requirements 33

Table 3.1: Initial requirements classified in core (CF) or ancillary (AF)

functionality.

Requirement Description Functionality

General requirements concerning the workflow

R1. Easy to use GUI Streamlined GUI and workflow optimized for an
easy to learn operation. CF

Requirements derived from PET/CT Fusion module examination

R2. Fusion imaging Simultaneous visualization of overlying PET and
CT image data using partial transparency of the
foreground image and colored lookup tables.

CF

R3. SUV computation Calculation of Standardized Uptake Values for
the segmented volumes of interest. CF

R4. Registration Alignment of image data from follow-up PET/CT
studies with baseline study. AF

Requirements derived from ChangeTracker module examination

R5. Longitudinal
Analysis

Import and simultaneous handling of an
unrestricted amount of PET/CT studies. CF

R6. Qualitative Analysis Display of all segmentation from different studies
in one view for qualitative comparison. CF

Requirements gathered from evaluation of syngo.via functional principles

R7. Concept of grouping
coherent
segmentations

Grouping of segmentations of the same structure
from different time points. CF

R8. Easy time point
switching

Shuffling between studies (from different time
points) should be uncomplicated and accessible at
every step of the workflow.

CF

R9. 3D volume
rendering

3D volume rendering of PET data for support in
detection of tumor hot-spots.. AF

Requirements based on the intention to leverage potentially useful Slicer functionalities

R10. 3D surface models
of segmented VOIs

3D visualization of segmentations in the form of
triangulated surface models. AF

R11. Quantitative analysis
visualization

Use of 3D Slicer 4 charting capabilities to
visualize quantification results in plots. CF

 3 Methods

34

3.1.2 Prototyping the Workflow

In software development, mock-ups are often used as rudimentary throwaway
prototypes for the GUI and do not provide any other functionality. This strategy is
called horizontal prototyping, based on the fact that the whole width of a system is
represented while deeper functionality is not implemented yet. Design and generation of
the GUI mock-ups for the requirements analysis were realized by using the open-source
GUI prototyping tool Pencil25. By offering various selections of elements for the easy
composition of user interfaces, this tool is superior to standard graphical editors,
especially when speaking about productivity. Moreover, the possibility to define user
controlled interaction between different mock-ups by exporting projects as HTML
pages can help to improve the awareness for the planned procedures.

Inspired by the workflow and GUI setup of the ChangeTracker module, the
workflow for the PET quantification module was also divided into multiple steps. The
first one represents the import of PET and CT data from a DICOM database. This step
has to be completed in order to be able to select PET/CT studies for further analysis.
Based on the image data from these studies, detection of lesions and segmentation of
those is following in a next step. Finally, quantification is performed based on the
segmentation results. As differentiability of the subsequent steps helps to improve user
awareness of the current workflow state, a wizard-based design was chosen for the first
GUI prototype. In terms of computer science lingo, a wizard is a graphical user
interface with subsequent input screens, designed to assist users at certain tasks like
software installation routines. Its most distinct feature is the possibility to navigate forth
and backwards between the different screens.

3.1.3 Elicitation of Additional Requirements

For the elicitation of additional requirements based on the first GUI mockup prototype,
interviews with 3D Slicer developers, clinical researchers and potential future users
were planned. For that reason, this project and the mockups of the workflow have been
presented at the 2012 NA-MIC Summer Project Week at MIT in Cambridge (MA). A
project event, which recorded 88 registered attendees, representing 20 academic sites
and 8 companies [58]. NA-MIC project events have been initiated in 2005 and are held
twice a year with the main goal to bring together NA-MIC participants and also active
and potential collaborators. Maximization of informal interaction between participants
and bringing forth the deliverables of NA-MIC is the main goal of these events [59].

Following the initial presentation of this project on the opening day, eight interviews
with main developers and potential users were conducted. While the former were

25 Pencil Project: http://pencil.evolus.vn

3.1 Requirements 35

looking for a platform to support their efforts in PET data processing with Slicer, the
latter were interested in the functionality of a module for longitudinal PET
quantification. The summary of additional requirements collected in these interviews is
presented in Table 3.2. While requirements formulated by developers mainly concerned
data structure and reusability of available code, potential users required improvement of
the GUI and inclusion of additional functionality. Further, external developers were
interested to use this work as a platform for their own work.

Table 3.2: Additionally elicited requirements classified in core (CF) or ancillary
(AF) functionality.

Requirement Description Functionality

Additional requirements concerning the workflow

R12. Organize data in a
„Report“

Organization of all data imported from DICOM or
generated during the workflow in a data structure
called “Report”,.

CF

R13. Organize
segmentation results
in „Findings“

All segmentations of the same structure from
different time points belong to one „Finding“. CF

R14. Additional study
importing

Support of loading of additional studies into an
already existing workflow. AF

R15. Export of results as
PDF to DICOM
database

Storing of analysis results in DICOM database by
creating a PDF file and pushing it to the database. AF

Additional requirements for the GUI

R16. Facilitate switching
between workflow
steps

Based on its sequential paradigm, navigating
between non-adjacent steps in a wizard can lead to
loss of awareness regarding the workflow state.
An alternative apporach to the wizard is required.

CF

R17. Consistent
availability of main
controls

GUI controls like the slider used for switching
studies and the tree view should always maintain
the same position in the view and be available in
all steps of the workflow.

CF

R18. Minimalize GUI
load

Only display the controls absolutely necessary to
perform the workflow and by default hide the ones
for advanced settings.

AF

Additional functionality requirements

R19. Integrate Editor
module

Integrate Slicer’s manual and semi-automatic
segmentation tools into the module. CF

R20. Multiple volume
rendering

Provide multiple 3D viewers for different volume
renderings in the comparison view. AF

R21. HLC chart type for
SUVs

Use the High-Low-Close chart type to plot SUV
minimum, mean and maximum values. AF

 3 Methods

36

Based on the results of the second requirements analysis iteration, a new prototype
was designed. While the first rudimentary prototype was mainly a composition of
clickable mockups, the intention for the second prototype was to streamline the GUI
and provide advanced interaction possibilities to improve user feedback. For the
implementation of such an improved horizontal prototype, the use of Qt developer
tools26 was considered as appropriate. Given the fact that the GUI of Slicer 4 is based on
the Qt framework, a similar look and feel could be realized in the prototype. Using the
cross platform Qt Designer for GUI building and the Qt Creator integrated development
environment for coding of advanced interactions between GUI elements, a simple
application GUI prototype was implemented in a timely manner.

3.1.4 Final Requirements

The third and last iteration of the requirements analysis was conducted based on the
second prototype. The application itself and a video demonstrating its use on the basis
of an example workflow were distributed to an external nuclear medicine research
group. This group has shown interest in using the final application for their work and
formulated an additional list of requirements, which are presented in Table 3.3.

Table 3.3: Final requirement additions in the requirements analysis, classified as
ancillary functionality (AF).

Requirement Description Functionality

Additional functionality requirements

R22. PET data only
visualization

Besides automatic PET and CT fusion imaging,
selection for visualization of PET data only should
be available.

AF

R23. Support
segmentation on CT
data

Enabling of the possibility to use segmentation
tools on CT data too. AF

Additional requirements for the GUI

R24. Simple and
informative
workflow overview

Display of the current workflow state using a
simpler view than the tree view used in both GUI
prototypes. AF

26 Qt developer tools: http://qt.digia.com/Product/Developer-Tools/

3.2 Design 37

3.2 Design

The successive design of a software system is a procedure that can be approached from
four different directions. Top-down, bottom-up, inside-out and outside-in are the
catchphrases used to describe these directions. The spatial perception of this model is
shown in Fig. 3.2. Ludewig and Lichter [55] explain the different approaches as
follows.

 Starting to design software based on an abstract task or problem with the aim to
develop a detailed and concrete solution is considered to be a top-down procedure.
Recursive partitioning of the problem until an elementary level is reached (commands
of the programming language) is the most common strategy in this kind of
development. In contrast to this analytical approach, bottom-up development is based on
repeated synthesis of low-level components until the final solution is obtained.
Beginning the development of the software with the internals of a system and working
towards a user interface can be described best as an inside-out approach. Typically this
is the case when additional functionality is added to an already existing system, e.g. a
graphical user interface for more convenient operation of an existing command line
application. Outside-in is the last of the four different directions, implying the design of
a system based on an already existent interface. Use of the outside-in approach is most
appropriate in cases where stakeholders have evaluated a horizontal prototype and
details of implementation are not specified yet.

Due to the results achieved in the requirements analysis of this project, the detailed
second GUI prototype was used for further design, following the outside-in strategy. In
the remainder of this section, the architectural design for the software is presented.
Special focus is given to the modeling of required class hierarchies, event- based GUI
behavior and optimized handling of user interaction.

Fig. 3.2: Directions for development in software design [55].

Task, Problem

System-Software, Hardware

Interface

bottom-up

top-down outside-in

inside-out

 3 Methods

38

3.2.1 Module Type Selection

Slicer supports three different types of modules [60]. Before the implementation of a
new module, developers have to make the decision whether a command line interface
(CLI), a loadable module or a scripted module type is most suitable for their tasks.

CLI modules are standalone executables or shared libraries, providing only limited
input/output parameter complexity. Moreover, they do not support user interaction other
than selection of input and output parameters in a GUI, generated from an XML
(Extensible Markup Language) schema file. Autonomically working algorithms, once
input parameters are passed, are best implemented and distributed as CLI modules.

Loadable modules in contrast, offer full control over their own GUIs, access to all
internal Slicer data structures (MRML data, program logics and display managers) and
to the APIs of the toolkits used within Slicer. These modules are distributed as shared
libraries, which are loaded at startup of the application. Complex user-system
interaction, data processing and visualization can be realized within a loadable module.
However, the increase in possibilities and functionalities depends on a more extensive
implementation following the MVC design pattern of the main application.

While CLI and loadable modules require implementation in C++, scripted modules
in Slicer 4 are written using the programming language Python. Similar to the loadable
ones, scripted modules offer access to Slicer internals and to the APIs of the toolkits
that are fully wrapped for Python use (VTK, ITK, MRML, CTK, Qt). With access to
CTK and Qt, scripted modules also provide full control over their GUI. The main
advantage of implementing a scripted module lies in the increased productivity based on
the simplified programming realized by the scripting language. While C++ written code
has to be recompiled after every change, scripted Slicer modules offer a mechanism
capable of updating the module during execution. Despite of all its advantages, the
generation and integration of additional MRML data types is not possible within a
scripted module since the MRML library is written in C++.

Requirements analysis has shown that using only data types from the MRML library
will not suffice the needs for modeling of the data structure for the new module. Taking
this into account, the implementation of the work as a loadable module is required.
However, the advanced build mechanism of Slicer offers the possibility to integrate
scripted classes into loadable modules in order to create a hybrid module written in C++
and Python. For the creation of such module, a majority of components can be
implemented using Python scripts, apart from the mentioned custom MRML classes,
and the logic responsible for integration of those into the main application. Given that
possibility, the decision was made to implement this work in the form of a hybrid
module. In so doing, the possibility to integrate own MRML data types while still being
able to leverage the advantages in productivity using the supported scripting techniques
was retained.

3.2 Design 39

In the following section the design for module specific MRML classes is presented
and an overview of the event-driven interaction of GUI elements with the module’s
Model and Controller classes is given.

Please note that although the software tool implemented in this work will be
distributed in the end as an extension for Slicer, it will be mostly referred to as module
in the remainder of this work. This is due to the fact that the implementation of an
extension does not differ from the one of a module. The only difference is the fact that
extensions do not belong to the standard distribution of Slicer but can be installed on
demand (for further details see section 2.4.5).

3.2.2 Model Classes - MRML

In the MVC driven architecture of Slicer, the Model is based on classes and hierarchies
defined in the Medical Reality Markup Language and accessible via the MRML library.
When implementing own classes derived from the base class MRMLNode, Slicer’s event
driven pipeline functionalities are automatically inherited and seamless integration into
Slicer’s MRMLScene is possible. The abstract superclass for all specific types of MRML
classes is the vtkMRMLNode. As the nomenclature suggests, this class inherits a VTK
class, namely vtkObject27. This abstract VTK base class mostly provides methods for
the implementation of an event-driven architecture offering mechanisms for registration
of observing instances and invoking of events. The vtkMRMLNode class extends this
functionality with variables and methods for identification and organization in the
MRMLScene, duplication, serialization and deserialization.

All classes in the Model of the module to be implemented derive directly from
vtkMRMLNode and overwrite the inherited abstract methods for duplication,
serialization, deserialization and console output. In order to realize the data hierarchy
that was elaborated using the prototypes in the requirements analysis, four new classes
needed to be implemented for the Model. Following Slicer naming guidelines, these
classes are named as follows:

• vtkMRMLLongitudinalPETCTReportNode (further referred to as
Report): Organizes patient information and manages the different Studies and
Findings of the analysis workflow.

• vktMRMLLongitudinalPETCTStudyNode (further referred to as Study):

Handles PET and CT image data loaded from a DICOM study.

27 Documentation of vtkObject classs: http://vtk.org/doc/nightly/html/classvtkObject.html

 3 Methods

40

• vtkMRMLLonigtudinalPETCTFindingNode (further referred to as
Finding): Represents a structure of interest that can be segmented for
quantification across the image data of all studies.

• vtkMRMLLongitudinalPETCTSegmentationNode (further referred to

as Segmentation): Stores the quantification result that were computed for a
certain segmentation in the image data of a specific study.

A simplified UML (Unified Modeling Language) class diagram of the above listed

classes is shown in Fig. 3.3 (see appendix A for detailed UML diagrams). An object of
Report represents the backbone of every PET/CT analysis workflow. It is bound to a
single patient and contains image data from his PET/CT DICOM studies and the
Findings that are created during analysis. All data loaded or generated for an analysis
workflow can be accessed through the respective Report object. Objects of Study are
concerned with PET/CT imaging data. They may each contain one PET and one CT
image series from a DICOM PET/CT study. Moreover, Study also provides additional
infrastructure required for segmentation, 3D volume rendering and registration of its
PET/CT image data. While Finding is used to represent a tumor or a reference
structure that is present in the PET image series of at least one PET/CT study,
Segmentation handles an actual segmentation for such a Finding and stores the
quantification results. In every Finding, one Segmentation may be created for each
Study available in Report.

Fig. 3.3: UML class diagram of the Model classes (MRML)

3.2 Design 41

3.2.3 View Classes - Widgets

All GUI widgets implemented in this work are written in C++, although the
possibility to use Python scripting for the composition of the module’s GUI is given. In
so doing, the individual widgets are directly accessible as Qt conform objects and are
not encapsulated within Python script files. By separating the GUI in multiple widgets
containing coherent controls, a higher modularity can be achieved. Creation of
customized Qt signals is also a great benefit when coding Qt widgets in C++. This
allows bundling of different signals into a single one specialized for the specific task.
Not only does this reduce the logical complexity of the application, it also helps to keep
the code clean. Another functionality provided by VTK and not yet accessible from
Python is the connection of VTK based events with slots in Qt objects. Given the fact
that all classes from the MRML-Library derive from vtkObject, this opens the
possibility for implementation of autonomically updating GUI widgets. Being able to
receive a signal whenever a MRML object has been modified, a widget containing
specific information about this object can automatically react to the modification and
update itself without any interaction from the application’s logic.

Designing ajar to the GUI prototype developed for requirements analysis, it was
advisable to break down the module’s default GUI into multiple widgets. For every
single workflow step a separate widget was implemented. In addition to these, a widget
for facilitated review of the current workflow state and a widget for modification of
workflow related settings was provided (see Fig. 3.4).

Fig. 3.4: UML class diagram of the View classes. All GUI widgets derive from
the AbstractPETCTModuleWidget. A pointer to the active Report
is stored in each widget, thus enabling autonomic updating of the
widget whenever this Report object is modified.

 3 Methods

42

The abstract class AbstractPETCTModuleWidget represents the base class for all
widgets of the module. Its only attribute is a pointer to a Report object. Whenever a
Report is assigned to an object of the class, the object’s specific VTK-event for
modification is automatically connected to the abstract updateWidgetFromMRML()
slot method using the VTK event - Qt slot connection functionality. All subclasses are
required to overwrite this method in order to update their visual representation upon
modification of the connected Report object. The ReportWidget represents the GUI
widget for the first workflow step. Selection between all Report nodes available in the
active MRMLScene and information about the respective patient are provided in this
widget. Using the functionalities of its built in StudyTableWidget, the
StudyWidget offers the possibility to add or remove Study objects to or from the
analysis workflow, which is done in the second workflow step. The FindingWidget
provides options for creation, selection or deletion of Finding objects and the
possibility for localization of those in the image data. After creation of a Finding
object, the FindingSettingsDialog is used to specify the name and color identifier
of the newly created Finding. Furhtermore, a widget representation of Slicer’s Editor
module is also integrated in this widget. The built-in Editor module provides direct
access to the tools required for segmentation. Handling of Finding and
Segmentation objects is part of the third workflow step. Similar to the
StudyWidget, the AnalysisWidget contains a built in
StudySelectionTableWidget for individual comparison of analysis results in the
forth workflow step. Selection between qualitative or quantitative analysis is also
possible from within this widget as well as the export of analysis results to disk.

Insights gained from prototype development suggest that only one workflow step
related widget should be visible at a time. Since these widgets are all individual
instances at runtime, this requirement is easily implementable. However, for an even
better awareness of the PET/CT analysis process, the ReportOverviewWidget
provides a facilitated overview of the current workflow state. Moreover, it can also be
used as a browser for quick access to image data from specific PET/CT studies or
segmentation results of certain Findings.

As already mentioned above, autonomic updates of GUI widgets are handled by the
connections of the abstract base class’s Report object to the overwritten
updateWidgetFromMRML() slots. Outgoing communication is realized by signal
emission. Each time a user interacts with one of the GUI controls, the widget containing
this element emits a specific signal, which then can be processed in the module Logic.

3.2 Design 43

3.2.4 Controller Classes - Logic

While the classes of Model and View are written in C++, almost all classes of the
module’s Controller (Logic) are written in Python. The sole exception is a single C++
class required for registration of the module’s MRML nodes to the main application. A
total of four Python classes represent the module’s Logic (see Fig. 3.5).

The DICOMPETCTPlugin is a class exclusively dedicated to the import of valid
PET/CT studies from Slicer’s DICOM database. In Slicer 4, this is realized using the
DICOM module’s plugin functionality. Objects of classes that inherit Slicer’s
DICOMPlugin28 class and implement its virtual methods are automatically registered to
the DICOM module during application startup.

As explained in the previous paragraph, user interaction in the module’s GUI is
forwarded to the application Logic using signal emission. During composition of the
GUI widgets, these signals are connected to the corresponding slots by an instance
of the main Logic class (LongitudinalPETCTModuleLogic). Besides access to all
GUI widgets of the module, the class also is able to store user selected Report, Study
and Finding objects. Having access to this data, the required reaction to user
interaction can be easily implemented in the respective slots of the main Logic class.

Non-slot methods of LongitudinalPETCTModuleLogic are either concerned
with the appropriate visualization of image data for a specific workflow step or support
of the segmentation process. Two additional Controller classes grant support for such
main-application related operations. On the one hand, the VisualizationHelper
class contains methods for switching between different visualization modes and
provides access to Slicer’s objects for data visualization such as the 2D Slice Viewers
and the 3D Volume Rendering Viewers or the Chart View representation. On the other
hand, the SegmentationHelper class mostly provides methods for processing of
segmentation results in the context of the module.

Fig. 3.5: UML class diagram of the Controller classes.

28 DICOM Plugin: Class Reference:

http://slicer.org/doc/html/classDICOMLib_1_1DICOMPlugin_1_1DICOMPlugin.html

 3 Methods

44

3.3 Implementation

Based on the underlying software development process model of this work, the
implementation of the module was conducted by following an incremental build
approach. In contrast to the horizontal prototyping, done in the requirements analysis,
the incremental implementation represents an evolutionary vertical prototyping process.
Fully functional subparts of the software are successively coded, tested and reviewed
before their integration into the system.

Implementation of the software realized in this work was partitioned into eight build
increments. Each increment depends on the functionality of the previous one and
consists of certain parts from the Model (MRML), View (Widget) or Controller (Logic)
of the module. The process of implementation was oriented to the GUI widgets
representing the different workflow steps of the PET/CT analysis. However, before such
a GUI widget could be implemented, the data structure required for full functionality of
the widget had to be made available. Then, after the widget was finalized and offered all
designated functionality, the module’s Logic was enhanced to ensure seamless
integration of the newly implemented elements and full support for user-system
interaction. In the Slicer main application GUI (see Fig. 3.6), the module’s GUI was
integrated into the Module Panel (on the left).

Fig. 3.6: Slicer main application GUI with empty Module Panel and PET/CT
Fusion visualization of loaded image volumes. The new PET/CT
analysis module is integrated into the Module Panel (left) and can be
selected with the Module Selector (top-left). During an analysis
workflow, extensive use of the 2D Slice Viewers and 3D Volume
Rendering viewer is made for visualization of 3D image data and
segmentations results.

3D Volume Rendering Viewer

Module Panel
(empty)

2D Slice Viewer
(sagittal)

Module Selector

2D Slice Viewer (axial)

2D Slice Viewer
(coronal)

3.3 Implementation 45

In the first build increment, scanning of Slicer’s DICOM database for patients with
valid PET/CT studies and loading of PET and CT image volumes from these studies
into the MRMLScene was realized. Provision of access to the loaded data belonged to the
implemented functionality of the second increment. Selection of image volumes for
further segmentation and analysis together with advanced 2D and 3D visualization were
objectives for the third increment. Afterwards, the foundation for organization of
segmentation and quantification results was laid in the forth increment by
implementation of the Finding data structure. This one was introduced in the second
GUI prototype. Actual segmentation and quantification of PET image data was part of
the fifth increments’ functionality implementation along with 2D and 3D visualization
of the segmentation results. The sixth increment was concerned with provision of
overview of the workflow and quick access to key data. Qualitative and quantitative
analysis visualization, as well as the possibility to export the analysis results to disk,
were implemented in the seventh increment. Finally, saving and loading of the
generated data and the possibility to modify PET/CT related visualization and
computation settings in the module was realized in the last build increment.

In the following, the techniques deployed in the incremental building of the above-
mentioned module subparts are presented. The module implemented in this work is
further referred to as Longitudinal PET/CT Analysis module.

3.3.1 Increment 1 - Loading of PET/CT Data from DICOM Database

Using only built-in Slicer DICOM plugins to import PET/CT studies for a longitudinal
multi-study analysis implies a cumbersome manual selection of the related PET and CT
image series. Hence, the implementation of a new plugin that is capable of automatic
selection and organization of the appropriate PET and CT DICOM data was advisable.
Such a plugin needs to summarize and present all coherent image data in one selectable
element.

The objective for the first build increment was to implement a new DICOM plugin
specialized on loading of PET/CT studies from DICOM database into the MRMLScene
and to provide the data structure required for this transition.

3.3.1.1 MRML Implementation

In the Longitudinal PET/CT analysis module, an instance of Report represents the
backbone of every PET analysis workflow. In the first build increment, a Report’s
main objective is to provide access to the image volumes loaded from the DICOM
database. Objects of the Study class handle organization of these volumes. At the
beginning, a Study object is implemented to store the unique identifiers of each, a PET

 3 Methods

46

and a CT image volume, and provide methods for assignment and access of those. In the
implementation of Report, Study objects are maintained in a vector29 variable, in
which they are sorted chronologically according to the acquisition date of their image
data.

All Model classes implemented in this work derive from the MRML-Library base
class vtkMRMLNode. In doing so, compatibility with Slicer’s MRMLScene and access to
the advanced event-handling functionality of Slicer is provided automatically.

3.3.1.2 GUI Widget Implementation

The required interface for loading of image data from Slicer’s DICOM database into the
MRMLScene is already provided by the DICOM-Browser from the DICOM module.
Hence, there was no need for implementation of a new GUI widget in the context of this
build increment.

3.3.1.3 Logic Implementation

The scripted Logic class DICOMLongitudinalPETCTPlugin represents the DICOM
plugin provided by the Longitudinal PET/CT module. It belongs to the module Logic,
since it only realizes the actual loading of DICOM data and does not provide an own
GUI. An interface for access of this plugin is supplied by Slicer’s DICOM-Browser.

To ensure full compliance with the DICOM plugin infrastructure, the plugin must
inherit the base class DICOMPlugin and overwrite two of its virtual functions. One of
these is required for the examination of the user selected DICOM data hierarchy while
the other handles the transition of DICOM data into derivates of vtkMRMLVolumeNode
objects.

In the DICOMLongitudinalPETCTPlugin, the overwriting implementation of the
former function is dedicated to parsing of user-selected DICOM data hierarchies for
studies with PET and CT image series. Only studies that contain image series from both
types are considered valid PET/CT studies and qualify for the longitudinal PET analysis
workflow. References for access of the image data from those PET/CT studies are
cached during the examination process. The overall examination results are summarized
into a single data object, which is returned to the DICOM module. There, it is presented
as a single entry in the DICOM-Browser amongst the examination results of the other
DICOM-Plugins.

Loading of PET/CT DICOM image data into Slicer’s MRMLScene is implemented in
the second overwriting function. Access to image data that has been cached during the
examination step can be accessed using the summarized result object. Similar to the

29 Sequence container implementing a data array capable of automatic resizing and random accessing

3.3 Implementation 47

approach in the default DICOM-Plugin for loading of scalar volumes, all selected PET
and CT image series are transformed into vtkMRMLScalarVolumeNode objects. In
addition to that, related PET and CT volumes are each assigned to newly generated
instances of Study, where they are stored together with PET/CT study and image series
parameters, which is important for PET quantification. Finally, all unique identifiers of
the Study objects and information about the patient are stored in an instance of
Report, which is then added to the MRMLScene.

An overview of the above presented process sequences is given in Fig. 3.7.

Fig. 3.7: UML Sequence Diagram for loading of PET/CT DICOM studies into
the MRMLScene using the DICOM-Browser and the
DICOMLongitudinalPETCTPlugin.

3.3.2 Increment 2 – Selection of Active Report Object

With the finalization of the DICOMLongitudinalPETCTPlugin in the first build
increment the requirements were met for the implementation of the actual module in the
second build increment. The main goal of this increment was to enable individual
selection of the Report objects that are loaded into the MRMLScene. By design, only
one Report object can be active in the module at a time, thus only data belonging to
this Report is editable in the module. In the following, the implementation of a GUI
widget for determination of the active Report and the implementation of application
logic required to support such selection is presented.

 3 Methods

48

3.3.2.1 GUI Widget Implementation

The starting point of every longitudinal PET/CT analysis workflow is initiated by the
selection of a Report object. Hence, a GUI, which provides the controls for such
selection, is required. The appearance of this interface is shown in Fig. 3.8.

For the actual selection, a combobox30 presenting all available Report objects from
the MRMLScene is used. Patient information, stored in the selected instance of Report,
is also presented in this GUI widget. If desired, this information can be hidden using the
button located at the bottom. In case that these specifics are not of interest or when only
low screen resolution is available, this feature helps to improve the visual appearance of
the widget by providing a tidy and compact interface.

An information label on the top right, which appears in this and all further
implemented GUI widgets of the module, represents a novelty approach in Slicer GUI
design. Hovering the mouse cursor over this label triggers the temporary display of a
textbox with information about the widget’s functionalities.

Fig. 3.8: GUI widget for active Report selection

3.3.2.2 Logic Implementation

Implementation of the Logic for active Report selection contains of a single slot
method and a variable representing this current active Report. The method is able to
receive signals that are emitted from the GUI whenever the Report selection
changes. Then, the selected Report is assigned to the previously mentioned variable (see
Fig. 3.9).

30 GUI control, represented by a combination of a drop-down list and a textbox.

Report selection

Widget, containing patient
information

Button for
hiding/showing patient

information Label, providing information
about the widget’s

functionalities when mouse is
moved over

3.3 Implementation 49

Fig. 3.9: UML Activity Diagram for the selection of the active Report object in
the first workflow step.

3.3.3 Increment 3 – Visualization of Image Data

By design, PET and CT image volumes referenced by the loaded Study objects are not
by default unlocked for segmentation in the module. In order to unlock them and by this
means add them to the further analysis workflow, user interaction is required.

Providing an overview of the selected Report’s Study objects and the possibility
to select or deselect those for segmentation and further analysis was the objective of the
third build increment. The following three paragraphs describe how the module
implementation was enhanced to provide the required functionality for such
presentation and selection of Study objects.

3.3.3.1 MRML Implementation

Based on the implementation from the first increment, Study objects only provide the
functionality to manage PET and CT image volumes. In order to support the selection
for segmentation and provide all required data for 2D and 3D visualization of the image
volumes, enhancement of the Study class was required. Besides a boolean31 variable
for labeling the Study object as selected for segmentation, three additional variables
were included. Since segmentations in Slicer are performed on
vtkMRMLScalarVolumeNode-based objects called label map volumes, Study objects
require a variable to store the unique identifier of such volumes. For 3D volume
rendering visualization, objects of the type
vtkMRMLVolumeRenderingDisplayNode are used. On that account, the Study class

31 Data type limited to two possible values, usually denoted as true and false.

 3 Methods

50

was enhanced to be able to store unique identifiers of such objects too. The last of the
new variables is used to keep track of vtkMRMLLinearTransformNode objects.
These can store the parameters of a linear transform, which is used for registration of
one Study object’s image data with another’s. Naturally, methods for access and
modification of the listed variables were also added to the implementation of the Study
class. In contrast to the rather extensive adaption of the Study class, enhancement in
the Report class was confined to an additional variable, and it’s access and
modification methods. This variable is responsible for storing the Study object, which
has been selected by the user in the GUI to be the current active Study. Ajar to the
concept of active Report, only the image volumes of one Study can be visualized by
the module at a time, this being the one selected as active.

3.3.3.2 GUI Widget Implementation

The GUI widget implemented in the third increment offers twofold selection
possibilities. Firstly, it can be used to select Study objects in order to unlock them for
segmentation in the following workflow steps. Secondly, it allows the selection of the
active Study whose PET and CT image data can then be visualized in the 2D Slice and
3D Volume Rendering viewers of the main application. This GUI widget is presented in
Fig. 3.10. A tabular presentation of all Study objects available in the active Report is
the main component of the widget. Corresponding to the acquisition of their image data,
the Study objects are listed chronologically from top to bottom. Information, which has
been stored in the Study objects during the loading process from the DICOM database,
is presented in the numerous columns of the table. Details of DICOM specific
identifiers, acquisition dates and information used for the computation of SUVs are
shown. By checking the checkboxes in the first column of the table, Study objects can
be selected for further segmentation and analysis. Marking a row in the table, by
clicking on one of its cells, can be used to select the active Study object. However,
only rows in which the checkbox in the first column is checked can be marked. The
reason for this restriction is that only the image volumes of Study objects, which have
been added to the workflow (marked for segmentation), should be visualized. Likewise
to the Report selection GUI widget implemented in the previous increment, an
information label is available in the top right corner, explaining the widget’s features
and their usage.

3.3 Implementation 51

Fig. 3.10: GUI Widget providing Study objects overview and selection
possibilities.

3.3.3.3 Logic Implementation

For the integration of the new GUI widget and leverage of the enhanced MRML data
structure, the implementation of two slot methods was required in the module’s Logic
class. While one slot handles the selection and deselection of a Study object for
segmentation, the other one is responsible for assigning the active Study to the
corresponding variable. A UML activity diagram of the process flows supported by the
Logic enhancement in the third increment is shown in Fig. 3.11. When a Study is
selected for further segmentation, the respective signal emitted by the GUI is received
by the Logic and the Study object’s variable for this selection status is set to true.
When deselected, this variable is set to false. If selected for segmentation, the Logic
initializes the visualization of the Study object’s image data. This process includes the
generation of a vtkMRMLScalarVolumeNode label map, a
vtkMRMLVolumeRenderingDisplayNode for volume rendering visualization and a
vtkMRMLLinearTransformNode object required for registration of the image
volumes. After creation, the unique identifiers of those objects are all stored in the
respective Study object. Subsequently, the variable holding the active Study is
updated. A Study selected for segmentation is automatically set as the active Study
and the Logic manages the visualization in the 2D Slicer and 3D Volume Rendering
viewers. On the other hand, a Study deselected from segmentation has all its image
data removed from visualization and if available, an adjacent selected Study is set as
active by the Logic (Fig. 3.11a).

The second slot added to the Logic in this increment reacts to the signals emitted
by the GUI when the active Study is changed. After reassignment of the variable for
active Study, the method updates the 2D Slice Viewers and the 3D Volume Rendering
viewer with the image data of the new active Study (Fig. 3.11b).

Checkboxes for
adding/removing
Studies to/from

the current
workflow

Label, providing
information
about the
widget’s

functionalities,
when mouse

cursor is moved
over

Table, presenting all Studies loaded from DICOM
database for the current selected Report

 3 Methods

52

Fig. 3.11: UML activity diagrams for selection of Study objects for segmentation
(a) and as active Study (b).

3.3.4 Increment 4 - Creation and Selection of Findings

Assessment of tumor changes in time series PET requires the segmentation of the tumor
in each single image series in order to be able to analyze the changes. The Longitudinal
PET/CT module is restricting neither the amount of time-displaced PET/CT studies that
can be examined nor the amount of different structures, which can be segmented in each
PET image series. For that reason, the Finding data structure was introduced during
the requirements analysis and design phase of this project. The goal of the forth build
increment was to implement a new MRML class for this data structure and provide a
GUI widget for the creation and selection of it.

3.3.4.1 MRML Implementation

At the beginning, the new MRML class vtkMRMLLongitudinalPETCTFindingNode
(further referred to as Finding) provided and handled four different variables. Since
distinguishability of Finding objects is important for the overview in the analysis
workflow, a unique color can be assigned to each Finding object after creation. Such
color derives from a built-in Slicer color table, which provides the default colors for
segmentation of the Editor module. However, only the identifier needed to access the
color from the table is stored in a Finding object. In the workflow, placing an ROI
bounding-box in the 2D Slicer Viewers specifies the location of the Finding in the
image data. The coordinates of the ROI center and its radius are stored in two different

a.

b.

3.3 Implementation 53

three-data array variables. The last variable is a boolean flag which indicates whether
an ROI for the Finding object has been placed by the user.

For full integration of the new Finding class on the MRML level, enhancement of
the Report class was required too. Similar to the vector-based management of Study
objects, Finding objects are also maintained in a vector variable in Report. An
additional variable was also included for the purpose of storing the user-selected active
Finding.

3.3.4.2 GUI Widget Implementation

Using the Slicer built-in combobox GUI widget for MRMLNode selection
(qSlicerMRMLNodeComboBox) allowed compressing of the controls needed for
creation, selection and deletion of Finding objects into one control in the user
interface. The GUI implementation in this build increment consisted of a widget (see
Fig. 3.12.a) and a dialog (see Fig. 3.12.b). In the widget, the above-mentioned
combobox is located in the middle of the top area of the widget. When expanded, it
exposes access to the controls for creation of new and deletion of existing and selected
Finding objects. Underneath located is the button for ROI placing, which is activated
subsequently to the selection of a Finding object. Clicking this button activates the
module’s functionality for placing an ROI bounding box in the 2D Slice Viewers of the
main application. Visualization of such bounding boxes in the viewers can be activated
or deactivated using the control for ROI visibility. Following the design of the GUI
widgets implemented in previous increments, an information label is available in the top
right corner.

In the dialog (see Fig. 3.12.b), a preset of 5 different Finding types is given. These
consist of tumor, lymph node, liver, cerebellum and aorta, and represent structures that
are often segmented in PET analysis. Thus, quick setting of Finding parameters using
these presets can improve the usability of the workflow. In case that none of the presets
matches the Finding intended to create, manual setting of the name and selection of a
color identifier is possible using the GUI controls located underneath the presets
buttons.

 3 Methods

54

Fig. 3.12: GUI Widget for creation and selection of Finding objects (a) and
Dialog for setting of tumor name and color identifier (b).

3.3.4.3 Logic Implementation

While Report and Study objects are generated automatically by the application, the
existence of Finding objects is fully controlled by the user. Instantiation of said
objects and their integration into and removal from the MRMLScene is performed
automatically by the qSlicerMRMLNodeComboBox, which was integrated into the
module’s user interface in the previously presented GUI widget. In those circumstances,
the enhancement of the module’s Logic was focused on the further processing and
customization of the Finding objects for the analysis workflow. Once a new Finding
has been added to the MRMLScene, the Logic receives the object in a signal from
the GUI and adds it to the Report as the current active Finding (Fig. 3.13.a). The
method for this assignment is also a slot, which is used to receive the signals from
the GUI whenever the active Finding is changed (Fig. 3.13.b). In case that a Finding
has been created in the widget, the dialog pops up and gives the user the possibility to

Button for triggering
the ROI bounding-box
placing functionality Label, providing

information about the
widget’s functionalities,
when mouse is moved

over

Combobox for Finding
object selection,

creation and deletion

Expanded selection combobox

Control for changing the
ROI bounding-box visibility

]

a.

b.

Combobox for selection of
color ID from Slicer’s default

color table

Color identifier presets
for different structures

Text input for Finding name

3.3 Implementation 55

specify the name and color identifier of the created object. A signal containing these
parameters is emitted by the dialog and processed by the Logic once the dialog is
closed.

When a Finding object is deleted using the combobox, the GUI widget emits a
signal. This signal is then processed by the Logic and leads to the removal of the
Finding from the active Report before it gets completely removed from the
MRMLScene (Fig. 3.13.c). Provided that a Finding object has been successfully
selected in the GUI, the user can trigger an ROI bounding box placing functionality.
The interactive placing is executed with two subsequent clicks in one of Slicer’s 2D
Slice Viewers. After a first click specifies the center of the ROI, a second click defines
its extent. Recording and translating the position of those two clicks from the 2D Slice
Viewers into the 3D image data coordinate system is also performed by the module
Logic. Eventually, the resulting coordinates and radius values of the ROI are stored in
the active Finding object (Fig. 3.13.d).

 3 Methods

56

Fig. 3.13: UML activity diagrams for the creation (a), selection (b) and deletion
(c) of Finding objects and placing of ROI bounding boxes (d) in the
third workflow step.

a.

b.

c.

d.

3.3 Implementation 57

3.3.5 Increment 5 – Segmentation and SUV Calculation

With the introduction of the Finding data structure in the forth increment, the
foundation for the actual process of segmentation was laid in the previous build
increment. By integrating Slicer’s Editor module into the module GUI, access to all
advanced semi-automatic and manual segmentation tools that are available in the main
application was granted. Since the objective of Finding objects is to represent a certain
tumor or reference structure within image data from different time points, the module
has to provide an interface for performing segmentations on the PET image volumes of
each Study available in the active Report. In the fifth build increment the required
data structure, GUI widget and Logic for realization of such interface was implemented.

3.3.5.1 MRML Implementation

Although the data structure for handling of segmentations is provided by Slicer in the
form of label map volumes, the implementation of a new class that is capable of storing
SUV statistics calculated for such label map volumes was required. For that reason, the
new class vtkMRMLLongitudinalPETCTSegmentationNode (further referred to as
Segmentation) was added to the module’s MRML classes. Besides the possibility to
reference the unique identifier of a label map volume from a specific Study object, this
class provides 10 further variables. Maximum, mean and minimum SUVs and the
standard deviation of those as well as the volume (in cc and mm3) and total voxel count
of the segmentation can be stored in a Segmentation object. Furthermore, the center
coordinates and the radius of the ROI that has been used to limit the segmentation
volume are stored in two three-data arrays similar to the ones used in the Finding
class. The objective of the last new variable is to store the unique identifier of a 3D
triangulated surface model of the segmented volume that is generated upon
segmentation.

For the support of the new Segmentation class the implementation of Finding
required enhancement. Hence, a map32 variable was added, providing the internal data
structure for connection of a Segmentation object to a specific Study object. In
doing so, access to the Segmentation object, which has been generated for a specific
Study in the context of a Finding, is granted to the module Logic.

32 Data type composed of a collection of key and value pairs with unique keys

 3 Methods

58

3.3.5.2 GUI Widget Implementation

In contrast to the previous build increment, the interface for segmentation did not
require the implementation of a new widget. By integrating the widget representation of
Slicer’s Editor module into the module’s GUI, the requirements for a fully functional
user interface for segmentation were automatically met. However, in the workflow of
this module segmentations are performed on temporary label maps before they are
copied to the target volumes. Hence, an additional button for confirming the
segmentation results and triggering the copy process was added to the module GUI
underneath the Editor module widget.

Fig. 3.14: Widget representation of Slicer’s Editor module integrated in the GUI
widget for Finding creation and selection.

3.3.5.3 Logic Implementation

One of the great advantages of reusing the available functionality of the Editor module
is the availability of program logic and tools for the process of segmentation. To
leverage these possibilities in the module, the Logic is required to prepare the correct
volumes for segmentation and afterwards process the results. The segmentation process
starts once the user opens the built-in Editor module with its segmentation tools widget
(Fig. 3.15a). When receiving the signal from the GUI that the segmentation tools
widget has been opened, the Logic uses the parameters of the previously defined ROI
bounding box to crop the PET image volume according to the ROI extents and zoom in
on it in the 2D Slice Viewers. It has to be taken into account that the cropped sub-
volume is just a copy of the original one. Hence, a temporary label map volume with the
same extents as the cropped volume is prepared for the following segmentation (Fig.

Editor module
segmentation
tools widget

Button for
segmentation
confirmation

Button for
opening /
collapsing

segmentation
tools widget

3.3 Implementation 59

3.15c). As mentioned above, the Editor module provides the logic for the segmentation
itself. Once the user has finished the segmentation on the temporary cropped volume, he
can confirm and add it to the active Finding. When confirmed, the Editor’s
segmentation tools widget is closed and the GUI emits a signal (Fig. 3.15b). This
causes the Logic to paste the segmentation results from the temporary label map volume
to the target label map volume of the active Study. Afterwards, the SUV statistics are
calculated and stored in a newly generated Segmentation object. This object is then
mapped in the active Finding. Finally, a 3D triangulated surface model of the
segmented volume is generated and displayed in the 3D Volume Rendering Viewer of
the main application (see Fig. 3.15c).

Fig. 3.15: UML activity diagrams for enabling (a) and disabling (b) of the
segmentation mode and the actual processing of segmentations initiated
from the FindingWidget (c).

a. b.

c.

 3 Methods

60

3.3.6 Increment 6 – Report Overview

Awareness of the current workflow state is a very important aspect when considering
the usability of the PET/CT analysis module. In the sixth increment, a tabular widget
was implemented providing overview over all available Study, Finding and
Segmentation objects in the active Report. Moreover, quick selection of active
Study and Finding objects is also possible with the help of this widget.

3.3.6.1 GUI Widget Implementation

The most distinctive feature of the GUI widget for Report overview, which is shown in
Fig. 3.16, is its integrated fully interactive table. At the beginning, before Study objects
have been selected for segmentation or Finding objects have been created, the table is
empty. However, each time a Study object is selected for segmentation, a column is
added to the table. Following the same principle, a row is added to the table each time a
Finding is created. To support quick selection of active Study or Finding objects,
the GUI widget was implemented to emit signals when the user clicks on a column
or row header.

In order to indicate whether a Segmentation object has been generated for a
Study-Finding constellation, the GUI widget also offers the possibility to fill cells
with specific colors. A colored cell indicates that a Segmentation object has been
generated for a specific Finding (represented by the cell’s row) on the image data of a
specific Study, (represented by the cell’s column). In addition to that, every colored
cell also provides a control that can be used for hiding or showing the 3D surface model
of the segmented volume in the 3D Volume Rendering Viewer of the main application.
Moreover, cells representing Segmentation objects can also display its SUV statistics
in a tooltip when the mouse cursor is hovered over the cell. Statistical values are also
displayed in the cells themselves but only one type of value can be presented at a time.
However, the user has the possibility to define the type of value to be displayed from
the selection control in the right upper corner of the widget. At the same time on the
opposite side, in the left upper corner, a label is used for providing more specific
information about the selected active Study. Similar to the GUI widgets implemented
in previous increments, an information label is available in the top right corner,
providing information about the widget’s functionality on mouse hovering.

3.3 Implementation 61

Fig. 3.16: GUI Widget for Report overview. In this example the widget presents
the overview of a workflow with two analyzed Study and two created
Finding objects.

3.3.6.2 Logic Implementation

Integration of the GUI widget for Report overview into the module required the
enhancement of the Logic class with three slot methods. Two of these are connected
to the respective signals for change of active Study and Finding. The third slot is
responsible of handling changes in visualization of the 3D surface models of the
segmented volumes, which can be displayed or hidden individually to increase the
overview in the 3D Volume Rendering Viewer.

3.3.7 Increment 7 – Qualitative and Quantitative Analysis

In the penultimate build increment, the actual analysis functionality was added to the
module. Two different types of analysis are realized in the Longitudinal PET/CT
analysis module. The qualitative analysis provides the possibility to compare PET/CT
image and segmentation volumes side by side in a 2D Slice Viewer grid. For the
quantitative analysis, charts of the different statistical values are plotted and visualized
using Slicer’s built-in chart viewer. For the realization of the seventh build increment,
the implementation of a new GUI widget was required as well as the enhancement of
the module Logic to handle the changes in visualization.

3.3.7.1 MRML Implementation

Support of individual comparison of analysis results required the enhancement of the
Study class with an additional boolean variable and its access and modification
methods. Adding of this variable allows individual labeling of Study objects in order to
present or hide their image and segmentation data in the 2D and 3D visualizations of the
analysis results.

Table rows
representing

Finding
objects

Table column headers
representing Study objects

Combobox providing selection for type of
SUV result presented in table cells

Currently active Study

Control for switching visibility of 3D
surface models of segmented volumes

in the 3D Volume Rendering Viewer

Quantification result for
segmentation represented by

table cell

Label, providing
information about

the widget’s
functionalities,
when mouse is

moved over

 3 Methods

62

3.3.7.2 GUI Widget Implementation

The visual appearance of the GUI widget for results analysis is similar to that of the
GUI widget for Study selection presented in section 3.3.3.2 (see Fig. 3.17). However,
the table for Study object selection is fulfilling a different purpose here. By checking
or un-checking the checkboxes in the different rows of the first column of the table, the
Study objects represented by those rows are either selected or removed from
comparison. In so doing, the widget is offering full support for individual comparison of
the analyzed PET/CT studies. Switching between the qualitative and quantitative
visualization of the analysis results can be done with the help of the two buttons at the
top of the widget. The button at the bottom of the widget is responsible for initiating the
export of the quantification results to disk. Information about this widget’s functionality
can be obtained by hovering the mouse cursor over the label in the top right corner of
the widget.

Fig. 3.17: GUI widget for quantitative and qualitative analysis and comparison.

3.3.7.3 Logic Implementation

Enhancement of the module Logic in the seventh build increment included the support
of selection/removal of individual analysis results from comparison, switching between
qualitative and quantitative analysis visualization and the export of quantification
results to disk. When a Study object is selected for or removed from comparison a
signal is emitted by the GUI widget, containing the object itself and the selection
state. In the Logic, this Study object is modified according to the check state and the
method responsible for visualization update is called (see Fig. 3.18c). The same method
is also called when the analysis type is changed from qualitative to quantitative or vice
versa.

Checkboxes for
selecting/removing

Studies for/from
comparison

Label, providing
information about the

widget’s functionalities,
when mouse is moved

over

Buttons for switching
between qualitative

and quantitative
visualization of the

analysis results

Button for the export of
analysis results as

comma separated value
file on disk.

3.3 Implementation 63

Depending on the selected analysis type, either a 2D Slice Viewer comparison grid
for the qualitative (see Fig. 3.18a) or a chart viewer for the quantitative analysis (see
Fig. 3.18b) is visualized in the main application. While the 2D Slice Viewer grid
displays the PET/CT image data and the corresponding segmentation volumes of all
Study objects selected for comparison, the chart view is used to present plots of the
analysis results. For the export of quantification results to disk, the Logic was enhanced
to receive and process the according signal from the GUI widget. After a target file is
specified with the help of a file dialog, a comma-separated-values file containing the
result values is generated and saved to disk (see Fig. 3.18d).

Fig. 3.18: UML activity diagrams for selection of qualitative (a) and quantitative
(b), individual comparison (c) analysis and export of results (d) in the
fifth workflow step.

a.

b.

c. d.

 3 Methods

64

3.3.8 Increment 8 – MRML Serialization and Module Settings

Support of serialization and de-serialization of the data generated during a PET/CT
analysis workflow as well as its interchangeability between different systems is an
important objective of the Longitudinal PET/CT module. Furthermore, automated
access to Slicer’s various advanced image data visualization settings can be of great
help for the analysis workflow and increases the overall usability of the application. The
implementation required to meet both above-mentioned goals was realized in the eighth
build increment. Besides the enhancement of all MRML classes to support serialization
and de-serialization, an additional GUI widget was implemented. This widget contains
controls for module specific settings regarding 2D and 3D visualization, availability of
volume rendering, 3D surface model generation and registration functionality as well as
the interface for integrating external algorithms into the module.

3.3.8.1 MRML Implementation

The implementation of all module specific MRML classes (Report, Study, Finding
and Segmentation) was completed in this last build increment. To do so, the methods
for serialization, de-serialization, duplication and console output of the member
variables had to be overwritten. These methods are all inherited from the base class
vtkMRMLNode. By implementing them, it is ensured that they are compatible with the
serialization process of the MRMLScene. The same applies for de-serialization of the
data when loaded from disk. The methods for duplication of the module’s different
MRML classes and for console output of their member variables are not necessarily
required in the context of this work but were also implemented in order to provide full
compatibility with the MRML-Library.

3.3.8.2 GUI Widget Implementation

Usage of Slicer’s vast 2D and 3D medical imaging visualization possibilities can
beyond any doubt support the user in his decisions during the PET/CT analysis
workflow. However, the manual modification of visualization settings can turn
relatively quickly into a cumbersome endeavor especially when dealing with numerous
image volumes. In order to remedy this circumstances, a GUI widget that can be used as
an interface for automated switching between different PET/CT 2D and 3D
visualization settings was implemented (see Fig. 3.19). Moreover, details of
segmentation presentation, PET/CT image data registration and the method used for
PET quantification can also be adjusted in this widget. In contrast to the previous
presented GUI widgets, this one’s controls follow a vertical layout as they are aligned
one below the other. Such layout was intended so that this widget can be used as an
always-accessible sidebar panel, positioned besides the GUI widgets for the workflow

3.3 Implementation 65

steps. The widget is divided into 5 different panels. The top panel provides the controls
for PET image volumes 2D and 3D visualization presets. Selection between three
different PET specialized color tables is possible. Moreover, controls for enabling or
disabling the 3D volume rendering visualization of PET image data as well as triggering
a spinning movement of it in the 3D Volume Rendering Viewer and modification of its
opacity are provided. In the second panel, the selection from four different
Window/Level presets for CT image volumes is supplied. Outlining of segmentations in
the 2D Slice Viewers as well as the generation of 3D surface models for segmented
volumes can be enabled or disabled in the forth panel. The fifth panel is concerned with
the settings for registration of PET/CT image data in the analysis workflow. Finally, the
last panel is the quantification settings panel. By clicking on the button in this last panel,
a text input dialog is opened, offering specification of the CLI module that is
responsible for the quantification of the loaded DICOM PET data. By using this
interface, external developers can exchange the default PET quantification method of
the module with their own algorithms.

3.3.8.3 Logic Implementation

Serialization and de-serialization of the module’s MRML classes is handled
automatically by the main application, hence it did not require adaption of the module
Logic. However, providing functionality for the module settings GUI widget required
enhancement of the module Logic. New methods were implemented in order to be able
to receive the various signals emitted by the GUI widget. Besides updating the
variables, which are affected by setting modifications, the Logic also has the objective
to save the current state of the setting controls to disk. This way the module can be
started every time with the exact same settings it was closed after a previous execution.
When stored on disk, unique identifier for the different settings and their respective
values are written into a text-based file, which is provided by the main application for
such purposes.

 3 Methods

66

Fig. 3.19: Module settings GUI widget.

PET image volumes
visualization presets

CT image volumes
visualization presets

Segmentation settings

Registration settings

Quantification settings

PET image volumes color tables

PET volume rendering settings

CT image volumes Window/Level presets

Controls for enabling/disabling the outlining of
segmentation volumes and the generation of

3D surface models

Control for enabling/disabling registration of
image data

Control for specification of the quantification CLI
module

3.4 Evaluation 67

3.4 Evaluation

Following the finalization of a first stable release, efficiency of the workflow,
reproducibility of analysis results and usability of the implemented module had been
evaluated. The methods used for the evaluation of the listed parameters are presented in
this section.

3.4.1 Keystroke Counts Comparison

Counting the keystrokes (in the following, the term keystroke is also used to describe
mouse-clicks) that are required to perform a certain task is a well-suited method to
measure the efficiency of a software workflow. In the context of the keystroke counts
evaluation study presented here, the module realized in this work was compared to the
PET/CT Fusion module from 3D Slicer 3 and the PET Standard Uptake Value
Computation module from the current version. While the former is the PET/CT analysis
module of the previous version of Slicer, the latter is a CLI module capable of single
study PET quantification in the current version of Slicer. Comparison with the PET/CT
Fusion module, which also has been examined in this project’s requirements analysis,
helped to reveal whether the planned improvements for PET/CT analysis in Slicer could
be achieved. Comparison with the PET Standard Uptake Value Computation module
showed if PET analysis in a guided workflow is superior in efficiency to manual
analysis using a CLI module.

The protocol of the keystroke counts comparison in this work stipulated that three
predefined tasks for PET analysis (see Table 3.4) had to be executed with each of the
PET analysis modules. Based on the nature of these tasks, the amount of analyzed
PET/CT studies could be included as a factor (n) into the keystroke counts formula and
did not have to be determined beforehand. In so doing, the suitability of the different
modules for longitudinal analysis could also be taken into account.

Table 3.4: Keystroke counts evaluation tasks.

Task 1: Loading of n PET/CT DICOM Studies from Slicer’s DICOM database.

Task 2: PET/CT fusion visualization in 2D Slice Viewers with PET and CT image volumes from
n loaded studies.

Task 3: Quantification of a tumor and reference VOI using a predefined label map volume for
each of the n PET volumes.

 3 Methods

68

3.4.2 Quantification Results Reproducibility

Quantitative assessment of tumors is less evaluator-dependent than qualitative
assessment, as already mentioned in chapter 2.1.5. However, as long as it is not
performed with fully automatic tools, quantitative assessment is still influenced by
subjective factors. In addition to this circumstance, the experimental protocol of SUV
computation is quite simple and far away from being a precise method for PET
quantification. Nevertheless, to this day it is the only method that is applied for PET
quantification in clinical practice. For that reason, criteria for treatment response
assessment focusing on tumor SUV changes, e.g. from the European Organization for
Research and Treatment of Cancer (EORTC), is based on empiric cutoff points (15%,
25%, 50%) that categorize in which order of magnitude the metabolic activity has
decreased, increased or if it remained stable (< 15% change in tumor SUV) [61].

The goal of the assessment of quantification results reproducibility in this work was
to evaluate the dimension of variability in PET analysis results from different
evaluators. Based on the results from this evaluation it could be estimated whether the
longitudinal analysis results produced by this work are precise enough to be applied to
the above-mentioned criteria for treatment response assessment. The setup of this
evaluation study contained of the following.

• Evaluators: 8 evaluators, not specialized in PET assessment
• Hardware: Apple Macbook Pro (Dual Core i7, 2.7GHz, OSX 10.7)
• Dataset: 3 DICOM FLT-PET/CT head studies with brain tumor

All evaluators who participated in this evaluation had to perform a 3-timepoint
longitudinal PET analysis by using the workflow provided by the Longitudinal PET/CT
module. For each study, the brain tumor had to be segmented in the PET volume by
using the built-in segmentation tools of Slicer. The primarily used tool was the
threshold segmentation, which in general obtains good results on PET images due to the
high intensities of metabolic active tissue. Furthermore, a semi-automatic tool for
removal of segmentation fragments not belonging to the segmented tumor (caused by
the previous threshold application) has been used as well as a manual drawing tool for
segmentation. Eventually, the computed minimum, mean and maximum SUVs of the
tumors segmented at all three time points have been documented for each evaluator.

3.4 Evaluation 69

3.4.3 Usability Evaluation

The usability of the implemented module was validated with a combination of heuristic
evaluation, questionnaires and personal interviews. Two different groups of evaluators
were involved in this evaluation. While one group was composed of clinical experts in
the field of PET research, Slicer development experts formed the other group. Both
groups were asked to apply usability heuristics to the PET/CT analysis workflow of the
module. Feedback from the clinical experts group was collected in personal interviews
after a detailed presentation of the workflow. For recording of feedback from the
software developer group, questionnaires were handed out. These questionnaires
contained free form text fields for notes concerning usability violations and additional
questions designed to increase awareness of the most important heuristics (see appendix
D). The use of two different experimental protocols was due to the limited time clinical
experts could spare from their everyday work for this evaluation. However, as already
mentioned in chapter 2.5.2, heuristic evaluation can be performed with very few
evaluators. Studies have shown that approximately 70% of usability problems in a
system can be found by heuristic evaluation with 4 and approximately 80% with 7
evaluators [44]. These results confirm that even with two different experimental
protocols for the two different evaluator groups, the heuristic usability evaluation
conducted in this work had the potential to reveal at least 70% of usability problems.

To provide an overview for the usage of the module, a screen-cast of a complete
PET/CT analysis workflow has been recorded and made online accessible for all
evaluators [62]. The complete setup of the evaluation is presented in Table 3.5.

Table 3.5: Heuristic usability evaluation study setup

 Clinical experts Slicer development experts

Group size 3 4

Preparation Online video with workflow
demonstration.

Execution of
the module

Presentation of the workflow by the
facilitator following the same
execution procedure as in the online
screencast.

Hands-on usage of the module by each
evaluator.

Recording of
usability
violations

Personal interview with the facilitator
during presentation of the workflow.

Questionnaire with free form text
fields and additional questions for
every workflow step.

Final severity
rating

Reported usability violations from all
clinical expert evaluators are
summarized in a form and sent back
for individual severity rating.

Reported usability violations from all
software development experts are
summarized in a form and sent back
for individual severity rating.

4 Results

In the following, an overview of the appearance and functionality of the GUI prototypes
implemented based on the results of both requirements analysis iterations is given.
Furthermore, this chapter is concerned with the results of the conducted validation
studies.

4.1 Mockups for the workflow based on initial requirements

4.1.1 Workflow Step 1: DICOM Import and PET/CT Study Selection

The intention of the first workflow step as to manage the import and selection of
PET/CT data required for further segmentation and quantification. The module accepts
only PET and CT data imported from Slicer’s DICOM database since quantification of
PET data can only be realized with additional information from its DICOM header.
Once a patient from the database is selected, the table is populated with entries of
his/her different PET/CT studies (see Fig. 4.1). By checking or un-checking the box in
the first column of a study entry in the table, the respective study is added to the
workflow or removed from it. Once a study entry is checked, its PET and CT image
data is loaded into the 2D Slice Viewers and the 3D Volume Rendering Viewer on the
right-hand side. Fusion imaging and 3D volume rendering are used for the visualization.
Based on the selection, the slider below the table is updated and shows the different
acquisition time points of selected studies. Further, this slider allows a quick switching
between the actually selected studies. Whenever a study in the workflow is selected by
using the slider, the corresponding image data is shown in the viewers.

 4 Results

72

Fig. 4.1: Mockup for the DICOM import and study selection step of the

workflow.

4.1.2 Workflow Step 2: Defining Regions of Interest

Narrowing down interesting structures for segmentation requires the use of regions of
interest (ROIs). Organization of ROIs from the same or different structures across
different studies can be implemented by using a three-leveled tree hierarchy. On the
first level, a root node is representing the current workflow. The third level consists of
the leaf nodes for the different ROIs. In between, the middle level of the tree is
represented by a data structure, grouping ROIs, which are localizing the same structure
at different time points. An example of the overall structure is shown in the tree view in
Fig. 4.2.

4.1 Mockups for the workflow based on initial requirements 73

Fig. 4.2: Mockup for the ROI definition step.

4.1.3 Workflow Step 3: Segmentation

To achieve the second goal of this work, namely to create an extensible platform for the
support of further developments in PET specialized registration, quantification and
especially segmentation algorithms, the suggested segmentation possibilities in the
mockup shown were kept rather simple. Therefore, only a double slider control for basic
gray scale value based threshold segmentations was integrated (see Fig. 4.3). The need
of various and diverse segmentation methods for the tool to be developed was evident.
However, by presenting only a single segmentation method in this throwaway prototype
the objective was pursued to improve the elicitation regarding essential and desired
segmentation tools. In addition to the visualization in the 2D Slice Viewers, a 3D
surface model of the current segmented volume of interest is presented in the 3D
Volume Rendering.

 4 Results

74

Fig. 4.3: Mockup for the segmentation step.

4.1.4 Workflow Step 4: Analysis

The last step in the workflow is the overall analysis of created segmentations and
automatically computed quantification results. Two different types of views are required
in this step since the visual inspection of segmentations is of a qualitative nature,
whereas the analysis of uptake values is of a quantitative one. Visualization for the
qualitative analysis is obtained by aligning the 2D Slice Viewers of each study next to
each other thus allowing comparison at a glance. These viewers are aligned horizontally
as shown in Fig. 4.4. To avoid an overflow of the screen when numerous studies have
been added to the workflow, the individual selection of studies for comparison purposes
is possible. This can be achieved by modifying the selection of the entries in the upper
table, which is similar to the one from the first workflow step.

Representing the computed quantification results in chart viewers is the main
characteristic of the quantitative analysis view (see Fig. 4.5). Each of the vertically
aligned viewers stands for a different study. Consistent to the functionality of the
controls in the qualitative view, the individual selection of studies to be compared
removes or adds the respective chart from or to the comparison. Below the chart
viewers a summary of the workflow is presented, containing all analysis results
obtained during the workflow.

4.1 Mockups for the workflow based on initial requirements 75

Fig. 4.4: Mockup for qualitative analysis view.

Fig. 4.5: Mockup for quantitative analysis view.

 4 Results

76

4.2 GUI Prototype Demo Application

4.2.1 Prototype Refactoring

In order to improve the understanding for the overall operation of the planned software,
a second prototype with a fully interactive GUI and dummy data for the demonstration
of an example workflow was implemented subsequent to the second iteration of the
requirements analysis process. Screenshots of this prototype and its appearance in the
different stages of the example workflow are presented in Fig. 4.6 and briefly explained
in the following.

At the beginning of every workflow a “Report” has to be created. Information about
all data imported into or generated in a workflow are stored within this Report. Another
noticeable change is the sacrifice of the wizard driven workflow organization. Each
workflow step can be made visible with just one click, provided that all data required
for the step to switch to is available. Since each step depends on the data prepared in the
previous steps, unrestricted switching is only possible as soon as the selection of the last
step is enabled.

4.2 GUI Prototype Demo Application 77

Fig. 4.6: Different workflow steps of the interactive GUI prototype: Report
selection (a); Study selection (b), Finding creation/selection and
segmentation (c), Analysis (d).

 4 Results

78

By design, only the GUI controls required for one workflow step are visible at a
time. However, the slider for time point switching and the tree view for the “Finding”
data structure have been detached from certain workflow steps where they were located
in the first GUI mockups prototype. Both are permanently visible and maintain the same
position in the user interface. Moreover, they offer a very convenient way for quick
selection of specific studies and segmentations. The placement of ROIs has been
bundled with the creation of Findings. The idea behind this approach was that every
time a Finding is created, an ROI of predefined size is placed at the crossing point of the
three 2D planes shown in the Slice Viewers. This ROI can then be adjusted manually. In
Fig. 4.6 c), the controls of the third workflow step, where Findings are created or
selected and segmentations can be performed using Slicer segmentation tools, are
shown. Each Finding can contain no more than a segmentation per time point. GUI
controls for the qualitative and quantitative analysis step of the workflow have not
changed significantly, whereas the analysis visualization is planned to offer High-Low-
Close chart types and multiple 3D volume rendering viewers (see Fig. 4.7).

Fig. 4.7: Visualization of the quantitative analysis including HLC-Charts for
SUVs plotting and 3D volume rendering views of PET data and
segmentations from every study / time point.

4.3 Keystroke Counts Comparison Results 79

4.3 Keystroke Counts Comparison Results

4.3.1 Loading of PET/CT DICOM Studies

Based on the fact that loading of PET/CT studies from Slicer’s DICOM database is
handled by a plugin in the newly implemented module (Longitudinal PET/CT
Analysis), the number of keystrokes required for import is independent from the amount
of loaded studies. In contrast to that, the keystroke counts for loading of PET/CT
DICOM studies without the plugin (for the PET Standard Uptake Value Computation
CLI module) shows a linear increase due to manual selection of the PET and CT image
series for each study. The most keystrokes are required for loading PET and CT
DICOM image series with the PET/CT Fusion module (see Fig. 4.8). This is mostly
based on the fact that Slicer 3 does not provide a DICOM browser for quick and easy
access to DICOM data, thus loading of image series has to be done manually by
importing the image files located on disk.

Fig. 4.8: Results of the keystroke counts comparison for the first task: “Loading
of n PET/CT DICOM Studies from Slicer’s DICOM database“.

4.3.2 PET/CT Fusion Visualization in 2D Slice Viewers

Automatic setup of PET/CT fusion visualization upon selection of a study in the
Longitudinal PET/CT Analysis module limits the amount of keystrokes for such
visualization to the amount of loaded PET/CT studies. However, the PET Standard
Uptake Value Computation CLI module does not provide such selection and requires a
cumbersome assignment of color lookup-tables for PET volumes and the manual
selection of foreground and background images in the 2D Slice Viewers for each study.
For that reason, the amount of counted keystrokes is significantly higher (see Fig. 4.9).
As the name implies, the PET/CT Fusion module is more suitable for PET/CT fusion
visualization, which is also reflected in its keystroke counts results for this task.

0	 5	 10	 15	 20	 25	 30	 35	 40	

1	

2	

3	

4	

5	

Keystrokes	

PE
T/
CT

	 S
tu
di
es
	

Longitudinal	 PET/CT	 Analysis	

PET	 SUV	 Computa?on	 CLI	

PET/CT	 Fusion	

 4 Results

80

However, its results underperform compared to the newly implemented Longitudinal
PET/CT Analysis module, especially as the number of studies is increasing.

Fig. 4.9: Results of the keystroke counts comparison for the second task:
 “PET/CT fusion visualization in 2D Slice Viewers with PET and CT

image volumes from n loaded studies“.

4.3.3 PET Quantification

Quantification of VOIs segmented from PET image data is the main purpose of all
compared modules. However, only the Longitudinal PET/CT Analysis module was
especially designed to facilitate longitudinal analysis. As seen from the diagram in Fig.
4.10, the keystrokes required for single study quantification are equal or, respectively,
differ by one. A noticeable difference only occurs when VOIs from multiple PET
images are quantified. In this case, the Longitudinal PET/CT Analysis module has
shown to perform better.

Fig. 4.10: Results of the keystroke counts comparison for the third task:
“Quantification of tumor and reference VOIs using a predefined label
map volume for each of the n PET volumes“.

0	 5	 10	 15	 20	 25	 30	

1	

2	

3	

4	

5	

Keystrokes	

PE
T/
CT

	 S
tu
di
es
	

Longitudinal	 PET/CT	 Analysis	
PET	 SUV	 Computa?on	 CLI	
PET/CT	 Fusion	

0	 5	 10	 15	 20	 25	

1	

2	

3	

4	

5	

Keystrokes	

PE
T/
CT

	 S
tu
di
es
	

Longitudinal	 PET/CT	 Analysis	

PET	 SUV	 Computa?on	 CLI	

PET/CT	 Fusion	

4.4 Quantification Reproducibility Results 81

4.4 Quantification Reproducibility Results

The results of the quantification reproducibility study demonstrate the robustness of the
quantification method used in this work and to which extent the preceding evaluator-
dependent segmentation process influences its results. All evaluators were able to
generate the same maximum SUV for the tumors in all respective datasets. However,
this optimal result is mostly due to the simple experimental protocol of maximum SUV
estimation, in which the highest quantified segmented voxel represents this maximum
value. On the contrary, the mean SUV derives from the totality of voxels in the
segmented VOIs, thus is directly influenced by the individual segmentations of the
evaluators. For that reason, reproducibility of mean SUV exhibited variability between
3.67% and 4.69% in relation to the maximum tumor SUV of the baseline dataset and
between 4.69% and 10.31% in relation to the maximum tumor SUV of each respective
study (see Fig. 4.11 left). Similar to the estimation of maximum SUV, the minimum
SUV in a VOI is represented by the lowest quantified voxel. However, the results in this
study show that the minimum SUV could not be reproduced as optimal as the maximum
SUV. This is mostly due to the fact that it is more likely to segment the highest
quantified voxel, which is usually somewhere within an area of high SUV values, than
the lowest quantified voxel, which will rather be found on the periphery of the VOI. In
this study, minimum SUV reproducibility results exhibited variability between 2.54%
and 4.26% in relation to the maximum tumor SUV of the baseline dataset and between
4.26% and 8.91% in relation to the maximum tumor SUV of each respective study (see
Fig. 4.11 right).

Regarding the results that were normalized with the respective tumor SUVmax of each
study, it becomes apparent that an increase of variability takes place from one dataset to
the other (see Fig. 4.11 right). This trend is due to the characteristics of the image data
used in this study. The overall tumor SUV is decreasing between the baseline and the
follow-up studies (based on successful treatment). For that reason, the contrast of SUV
values in the tumor region is reduced. Hence, differentiation between healthy tissue and
tissue with increased metabolic activity becomes more complicated, which leads to
more variations in the evaluator-dependent segmentation process. However, this study
has been conducted with evaluators who were not specialized in PET assessment, thus it
can be assumed that evaluators with expertise in PET analysis will most likely be able
to achieve less varying results.

 4 Results

82

Fig. 4.11: Results from quantification reproducibility evaluation with 8 evaluators
and 3 head PET/CT image datasets, normalized with tumor SUVmax of
Dataset1 (left) and tumor SUVmax of each respective dataset (right).

4.5 Heuristic Evaluation Results

The results of the heuristic usability evaluation are of a twofold nature. While the Slicer
development expert group reported some minor usability problems, mostly related to
the GUI, feedback from clinical experts group was focused more on additional desired
capabilities. In the following, results from the usability problems severity rating and the
feature request rating are presented.

4.5.1 Slicer development experts usability problems severity rating

The Slicer experts group used questionnaires to report usability violations. Inspection of
this feedback revealed in total seven usability problems that the evaluators encountered
during execution of the module. These problems were:

1. Information labels in the top right corner of workflow step GUI widgets are too
plain when colored gray.

2. Access to the DICOM browser is only possible through the Slicer menu and not
offered by the module’s GUI.

3. The order of the GUI widgets for the subsequent workflow steps is not
necessarily obvious from their arrangement.

4. Loading of just the result presented by the PET/CT DICOM plugin always
requires deselection of the additional results from other plugins that are selected
by default too.

5. Default enabled spinning movement of 3D volume rendering is remarkably
slowing down the performance of the system.

6. It takes a little to get used to the two-click ROI placing mechanism.
7. The Report overview is not able to present all quantification results at once.

4.5 Heuristic Evaluation Results 83

The severity of each one of the 7 summarized problems was rated by all 4 evaluators
of the group using a severity rating scale for usability heuristics [48]. The result of this
ranking demonstrates that from the 7 usability problems only 2 were considered to be
real usability problems, while the others were rather ranked in between cosmetic and
minor usability problems (see Fig. 4.12).

Fig. 4.12: Severity raking of the 7 summarized usability problems, performed by 4
of 4 evaluators of the Slicer developer experts heuristic evaluation
group.

4.5.2 Clinical experts feature request rating

Usability feedback from clinical experts was collected during personal interviews. As
mentioned above, this feedback was more focused on usable features that are not yet
implemented in the module than on usability problems. For that reason, all reported
feature requests have been summarized to 6 feature requests:

1. Calculation of SUVpeak
33

2. Threshold segmentation tool based on percentage of SUVpeak
3. Visualization of complete PET DICOM header
4. Manual (rigid) image registration across timepoints
5. Visualization of tumor growth/shrinkage comparison between studies
6. Kinetic modeling support for dynamic PET imaging

The clinical expert evaluators (2 of 3) rated the importance of each of these features
for an elaborated PET analysis workflow. The majority of the requested features were

33 More robust quantification method than SUVmax, in which a predefined ROI is placed around the

maximum SUV or highest uptake region and the average SUV in this ROI results in the SUVpeak.

 4 Results

84

rated as important enhancements or even crucial requirements for a correct PET
analysis workflow (see Fig. 4.13).

Fig. 4.13: Feature importance raking of the 6 summarized feature requests,
performed by 2 of 3 evaluators of the clinical experts evaluation group.

5 Discussion

PET imaging has become a very important tool for oncology due to its potential to
visualize metabolic activity and is increasingly used in clinical practice for diagnosis
and staging of tumors. However, assessment of PET is predominantly carried out
through simple visual inspection. Even though the importance of PET quantification is
generally accepted, only simplified measures like SUV are used in routinely diagnosis
and staging.

In this work, a software tool has been developed with the goal to fulfill two purposes.
First, a workflow is provided for the analysis of time-series PET image data. During the
implementation of the tool, significant efforts have been made to ensure that said
workflow is intuitive and efficient to use even for operators who are not specialized in
the field of PET analysis. Second, interfaces were integrated into the software
architecture in order to allow fellow researchers to use this tool as a platform for the
prototyping and development of new PET specific quantification and segmentation
algorithms. When extending the software with such algorithms, developers benefit from
the fact that they can build up on the available workflow. This way, their focus lies on
prototyping while data handling and visualization is provided by the underlying
platform and supported by the workflow. Moreover, the tool implemented in this work
is also well suited for validation of new quantification and segmentation methods by
clinical evaluators.

Validation of the software tool realized in this work has shown that an improvement
in operational efficiency, compared to alternative tools for PET quantification in Slicer,
has been achieved. Unfortunately, a similar efficiency comparison with a commercial
system was not feasible in this work. Nevertheless, live demonstrations of PET
quantification workflows in commercial systems (from Siemens and Hermes Medical
Solutions) proved that there is no significant difference in efficiency between those
tools. However, the commercial solutions offer more sophisticated segmentation and
quantification methods than the ones provided in this work.

Taking a closer look at the usability evaluation results, it becomes apparent that the
prototype driven implementation of the software had a positive effect on the achieved
usability. None of the evaluators reported a severe usability issue, which e.g. would bear
the potential to make the software unusable for PET analysis. However, feedback from
the clinical experts indicated that a few additional PET segmentation and quantification
features need to be implemented in the future, in order to bring the tool on a similar
level of functionality as it is offered by commercial solutions.

In the quantification reproducibility validation study, an average variability of 3.84%
was achieved when variations were considered in relation to the maximum SUV of the

 5 Discussion

86

baseline study. On that account, it can reasonably be concluded that the precision of
quantification results offered by this work suffices for a basic assessment of treatment
response. In particular because such assessment is usually done by comparison of
quantification results from follow-up studies with the baseline-study, and empirical
cutoff points for categorization are chosen relatively wide (15-25%). However, intra-
study mean and maximum SUV variability reached up to 10.34%, which is rather high.
Based on the fact that the reproducibility study was performed by evaluators who were
not experts in PET analysis, it can be concluded that most of the variability is due to
missing expertise in PET analysis rather than to inaccuracies in the quantification
methods. Future validation studies performed by evaluators with expert knowledge in
PET analysis will have to show if intra-study mean and maximum SUV variability can
be reduced to an adequate level.

Probably the most relevant drawback of the implemented work at this stage is the
lack of peak SUV (SUVpeak) assessment. When compared to maximum SUV (SUVmax),
SUVpeak has shown to be more robust, due to the fact that it is less adversely affected by
noise. Another issue might be seen in the use of a quantification method which is based
on bodyweight normalized SUV. As presented in section 2.1.5, this SUV index has a
relatively simple experimental protocol, and for that reason tends to be considerable
inaccurate when it comes to comparison of quantification results from different patients.
However, integration of algorithms for body surface area or lean body mass normalized
SUV has its pitfalls too. The use of bodyweight normalized SUV is so widespread in
clinical practice that the required additional parameters for estimation of body surface
area or lean body mass SUVs are often missing in the PET DICOM data. Hence, there
always remains the risk that such image data becomes incompatible with the software
or, even worse, quantification might deliver false results. A possible workaround for
this problem could be obtained by offering a fallback solution in form of bodyweight
normalized SUV computation in case that required parameters for execution of the more
sophisticated methods are missing.

Considering the strategy for further development of the software, it would be best to
continue with enhancement of the data structure to support SUVpeak assessment and to
develop and integrate a new segmentation tool, which is capable to leverage this
enhanced implementation. Next, integration of body surface area or lean body mass
SUV computation methods should be considered in order to be able to provide more
reliable quantification results. With these enhancements, the software can be brought to
a level of functionality akin to the one offered by commercial PET analysis software.

For further support of external developers, an enhancement of the available
interfaces for integration of new algorithms should be taken into consideration. While
the plugin architecture for extension of segmentation tools is provided by the
implementation of Slicer’s Editor module, the interface for extension of quantification
algorithms was implemented as a part of this work. External developers can submit

5 Discussion 87

specific enhancement requests through the Slicer bug tracking system or by using the
open mailing lists provided by the Slicer developer community. In summary, it can be
said that the majority of the missing features and usability issues that were revealed
during the evaluation of this work, can be implemented or fixed with relatively little
effort due to the well-elaborated architecture of the developed software.

5.1 Conclusion

In conclusion, an extensible, free open source software tool for longitudinal analysis
of tumor changes in PET imaging has been developed in this project. With its currently
available default configuration, this tool covers the basic requirements for PET
quantification. Development and integration of more advanced PET segmentation and
quantification methods can be implemented in the future by leveraging the extensible
architecture of the software.

Bibliography

[1] R. Boellaard, “Standards for PET image acquisition and quantitative data analysis,” Journal of
nuclear medicine  : official publication, Society of Nuclear Medicine, vol. 50 Suppl 1, p. 11S–20S,
May 2009.

[2] H. S. Huang, “Anatomy of SUV,” Nuclear Medicine and Biology, vol. 27, no. 7, pp. 643–646,
2000.

[3] K. Zasadny and L. Wahl, “Standardized uptake values of normal tissues at PET with 2-[fluorine-
18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction.,”
Radiology, vol. 189, no. 3, pp. 847–850, 1993.

[4] Y. Sugawara, K. R. Zasadny, a W. Neuhoff, and R. L. Wahl, “Reevaluation of the standardized
uptake value for FDG: variations with body weight and methods for correction,” Radiology, vol.
213, no. 2, pp. 521–5, Nov. 1999.

[5] R. J. Hicks, “The SUV and FLT PET: a tasty alphabet soup or a dog’s breakfast?,” Leukemia &
lymphoma, vol. 48, no. 4, pp. 649–52, Apr. 2007.

[6] C. K. Kim, N. C. Gupta, B. Chandramouli, A. Alavi, and P. Population, “Standardized Uptake
Values of FDG: Body Surface Area Correction is Preferable to Body Weight Correction,” The
Journal of Nuclear Medicine, vol. 35, no. 1, pp. 164–167, 1994.

[7] M. Vanderhoek, S. B. Perlman, and R. Jeraj, “Impact of the definition of peak standardized
uptake value on quantification of treatment response,” Journal of nuclear medicine  : official
publication, Society of Nuclear Medicine, vol. 53, no. 1, pp. 4–11, Jan. 2012.

[8] G. Tomasi, F. Turkheimer, and E. Aboagye, “Importance of Quantification for the Analysis of
PET Data in Oncology: Review of Current Methods and Trends for the Future,” Molecular
imaging and biology MIB the official publication of the Academy of Molecular Imaging, vol. 13,
no. 2, pp. 1–16, 2011.

[9] R. N. Gunn, S. R. Gunn, and V. J. Cunningham, “Positron emission tomography compartmental
models,” Journal of cerebral blood flow and metabolism  : official journal of the International
Society of Cerebral Blood Flow and Metabolism, vol. 21, no. 6, pp. 635–52, Jun. 2001.

[10] J. Logan, “Graphical analysis of PET data applied to reversible and irreversible tracers,” Nuclear
medicine and biology, vol. 27, no. 7, pp. 661–70, Oct. 2000.

[11] V. J. Cunningham and T. Jones, “Spectral analysis of dynamic PET studies,” Journal of cerebral
blood flow and metabolism  : official journal of the International Society of Cerebral Blood Flow
and Metabolism, vol. 13, no. 1, pp. 15–23, Jan. 1993.

[12] H. Jadvar, “PET Physics and Instrumentation,” in in Clinical PET and PET/CT, London: Springer
London, 2005, pp. 1–43.

[13] T. B. Lynch, “Basic Physics,” in in PET/CT in Clinical Practice, London: Springer London,
2007, pp. 204–214.

Bibliography 89

[14] M.-J. Martinez, S. I. Ziegler, and T. Beyer, “PET and PET/CT: Basic Principles and
Instrumentation,” in in PET in Oncology, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 1–23.

[15] J. Langner, “PET Schema.” [Online]. Available:
http://upload.wikimedia.org/wikipedia/commons/c/c1/PET-schema.png. [Accessed: 01-Mar-
2013].

[16] D. L. Bailey, “Data Acquisition and Performance Characterization in PET,” in in Positron
Emission Tomography Basic Sciences, London: Springer London, 2005, pp. 41–62.

[17] M. Defrise, P. E. Kinahan, and C. J. Michel, Image Reconstruction Algorithms in PET. London:
Springer London, 2005.

[18] T. Beyer, D. W. Townsend, T. Brun, P. E. Kinahan, M. Charron, R. Roddy, J. Jerin, J. Young, L.
Byars, and R. Nutt, “A combined PET/CT scanner for clinical oncology,” Journal of nuclear
medicine  : official publication, Society of Nuclear Medicine, vol. 41, no. 8, pp. 1369–79, Aug.
2000.

[19] T. E. Nichols, J. Qi, and R. M. Leahy, “Continuous Time Dynamic PET Imaging Using List
Mode Data,” no. Ml, pp. 98–111, 1999.

[20] H. W. Atabe, Y. I. Koma, Y. K. Imura, M. N. Aganawa, and M. S. Hidahara, “PET kinetic
analysis — compartmental model,” Annals of Nuclear Medicine, vol. 20, no. 9, pp. 583–588,
2006.

[21] N. E. M. Association, “Digital Imaging and Communications in Medicine (DICOM). Part 1.
Introduction and overview.” p. 5, 2011.

[22] O. S. Pianykh, Digital Imaging and Communications in Medicine (DICOM). Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 3–68.

[23] N. E. M. Association, “Digital imaging and communications in medicine (DICOM) Part 3:
Information object definitions.” p. 46, 2011.

[24] N. E. M. Association, “Digital imaging and communications in medicine (DICOM) Part 6: Data
dictionary,” NEMA PS. 2011.

[25] N. E. M. Association, “Digital Imaging and Communications in Medicine (DICOM) Part 5: Data
Structures and Encoding.” pp. 23–31, 2011.

[26] R. Salgado, T. Mulkens, P. Bellinck, and J. L. Termote, “Volume rendering in clinical practice. a
pictorial review,” JBR-BTR: Journal Belge de Radiologie - Belgisch Tijdschrift voor Radiologi),
vol. 86, no. 4, pp. 215–20, 2003.

[27] P. Van Ooijen, “Noninvasive coronary imaging using electron beam CT: surface rendering versus
volume rendering,” American Journal of Roentgenology, no. January, pp. 223–226, 2003.

[28] DKFZ, “Leber OP Planung - Forschungsprojekte der Abteilung Medizinische und Biologische
Informatik.” [Online]. Available: http://www.dkfz.de/de/mbi/projects/leber.html. [Accessed: 19-
Jun-2013].

[29] W. J. Schroeder, K. Martin, and B. Lorensen, The visualization toolkit. [Clifton Park, NY]:
Kitware, 2006, p. XVI, 512 S.

[30] J. M. Fitzpatrick and M. Sonka, “Image Registration,” in in Handbook of Medical Imaging,
Volume 2. Medical Image Processing and Analysis, Society of Photo Optical, 2000, pp. 447–513.

 Bibliography

90

[31] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International Journal
of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988.

[32] B. Van Ginneken and A. Frangi, “Active shape model segmentation with optimal features,” IEEE
Transactions on Medical Imaging, vol. 21, no. 8, pp. 924–933, 2002.

[33] L. Ibáñez and W. J. Schroeder, Eds., The ITK software guide. [New York]: Kitware, 2005, p.
XXXII, 787 S.

[34] NA-MIC, “National Alliance for Medical Image Computing.” [Online]. Available:
http://www.na-mic.org/. [Accessed: 19-Apr-2013].

[35] S. Pieper, B. Lorensen, W. Schroeder, and R. Kikinis, “The NA-MIC Kit  : ITK , VTK , Pipelines
, Grids and 3D Slicer as An Open Platform for the Medical Image Computing Community 5)
National Alliance for Medical Image Computing,” pp. 698–701, 2006.

[36] “NA-MIC-Kit,” 2013. [Online]. Available: http://www.na-mic.org/Wiki/index.php/NA-MIC-Kit.
[Accessed: 25-Feb-2013].

[37] The Common Toolkit, “Readme.” [Online]. Available:
https://github.com/commontk/CTK#readme. [Accessed: 22-Feb-2013].

[38] Qt Project, “All Classes.” [Online]. Available: http://qt-project.org/doc/qt-4.8/classes.html.
[Accessed: 12-Apr-2013].

[39] Nokia, “Using the Meta-Object Compiler (moc).” [Online]. Available: http://harmattan-
dev.nokia.com/docs/library/html/qt4/moc.html. [Accessed: 12-Apr-2013].

[40] Qt Project, “Signals & Slots.” [Online]. Available: http://qt-project.org/doc/qt-
4.8/signalsandslots.html. [Accessed: 12-Apr-2013].

[41] P. Mildenberger, M. Eichelberg, and E. Martin, “Introduction to the DICOM standard,” European
radiology, vol. 12, no. 4, pp. 920–7, Apr. 2002.

[42] A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D.
Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V Miller, S. Pieper, and R. Kikinis,
“3D Slicer as an image computing platform for the Quantitative Imaging Network,” Magnetic
resonance imaging, vol. 30, no. 9, pp. 1323–41, Nov. 2012.

[43] V. Vezhnevets, “‘GrowCut’ - Interactive Multi-Label N-D Image Segmentation By Cellular
Automata,” 2004.

[44] J. Nielsen, Usability engineering. San Francisco, Calif. [u.a.]: Kaufmann, 1993, pp. 23–37, 155–
163.

[45] J. Nielsen, “Usability 101: Introduction to Usability.” [Online]. Available:
http://www.nngroup.com/articles/usability-101-introduction-to-usability/. [Accessed: 20-Jun-
2013].

[46] A. E. Carpenter, L. Kamentsky, and K. W. Eliceiri, “A call for bioimaging software usability,”
Nature methods, vol. 9, no. 7, pp. 666–70, Jul. 2012.

[47] R. Mack, J. N. N, H. Laboratories, P. Brooks, B. North, and R. J. H. Laboratories, “Usability
Inspection Methods,” 1993.

Bibliography 91

[48] J. Zhang, T. R. Johnson, V. L. Patel, D. L. Paige, and T. Kubose, “Using usability heuristics to
evaluate patient safety of medical devices,” Journal of Biomedical Informatics, vol. 36, no. 1–2,
pp. 23–30, Feb. 2003.

[49] S. Lauesen, User interface design. Harlow  ; Munich [u.a.]: Pearson/Addison-Wesley, 2005, p.
XVIII, 604 S.

[50] W. W. Royce, “Managing the Development of Large Software Systems: Concepts and
Techniques,” in IEEE WESCON, 1970, no. August, pp. 1–9.

[51] B. W. Boehm, “A spiral model of software development and enhancement,” Computer, vol. 21,
no. 5, pp. 61–72, 1988.

[52] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software development methods,”
VTT Publications, pp. 11–12, 2002.

[53] K. Beck, Extreme programming explained. Reading, Massachusetts: Addison-Wesley, 2000, p.
XXI, 190 S.

[54] K. Schwaber, Agile project management with Scrum. Redmond, Washington: Microsoft Press,
2004, p. XIX, 163 S.

[55] J. Ludewig and H. Lichter, Software-Engineering. Heidelberg: dpunkt-Verlag, 2007, pp. 209–10,
377–78.

[56] M. Chemuturi, “Elicitation and Gathering of Requirements,” in in Requirements Engineering and
Management for Software Development Projects, New York, NY: Springer Berlin Heidelberg,
2013, pp. 33–54.

[57] S. Pieper, M. Halle, and R. Kikinis, “3D SLICER,” in Proceedings of the 1st IEEE International
Symposium on Biomedical Imaging: From Nano to Macro, 2004, pp. 632–635.

[58] NA-MIC, “2012 Summer Project Week.” [Online]. Available: http://www.na-
mic.org/Wiki/index.php/2012_Summer_Project_Week. [Accessed: 04-Apr-2013].

[59] NA-MIC, “Project Events.” [Online]. Available: http://wiki.na-
mic.org/Wiki/index.php/Project_Events. [Accessed: 04-Apr-2014].

[60] Slicer Wiki, “Modules.” [Online]. Available:
http://www.slicer.org/slicerWiki/index.php/Documentation/4.2/Developers/Modules. [Accessed:
10-Apr-2013].

[61] R. L. Wahl, H. Jacene, Y. Kasamon, and M. A. Lodge, “From RECIST to PERCIST: Evolving
Considerations for PET response criteria in solid tumors.,” Journal of nuclear medicine  : official
publication, Society of Nuclear Medicine, vol. 50 Suppl 1, no. Suppl 1, p. 122S–50S, May 2009.

[62] P. Mercea, “Workflow Demonstration: Longitudinal PET/CT Analysis Extension for 3D Slicer
4.” [Online]. Available: https://www.youtube.com/watch?v=O7Di6UZDsf0. [Accessed: 29-Jun-
2013].

A Installation Guide

This section presents the installation process of the Longitudinal PET/CT Analysis
module using the Extension Manager in 3D Slicer 4. As a prerequisite for this
installation, 3D Slicer 4 (version 4.2 or higher) needs to be installed first on a Windows,
Linux or Mac OSX platform. Stable releases and nightly build installer packages are
available via the Slicer download page34.

Fig. A.1: Opening Slicer’s Extension Manager from the menu bar.

In a first step, Slicer’s Extension Manager has to be opened using the menu bar of the

main application. It is located in the “View” menu (see Fig. A.1). The user interface of
the Extension Manager dialog is divided in two different tabs. For installation of new
extensions, the “Install Extensions” tab needs to be opened. In there, all extensions
available at the timepoint of opening the Extension Manager are presented. Installation
of the Longitudinal PET/CT Analysis extension is initiated by clicking on the “Install”
button located underneath its icon (see Fig. A.2). Thereupon, the installation is
performed automatically in the background. When successfully installed, the application
has to be restarted in order to be able to access the functionality of the newly installed
extension.

34 3D Slicer 4 download: http://download.slicer.org/

 A Installation Guide

94

Fig. A.2: 3D Slicer 4 Extension Manager “Install Extensions” view.

In addition to the possibility for installation of the Longitudinal PET/CT Analysis
extension using Slicer’s Extension Manager, the source code of this project is also
available online and can be used to build the binary files of the software manually. The
source files can be found at the web-based hosting service github35. The exact location
of the repository used in this work is: https://github.com/paulcm/LongitudinalPETCT.

35 GitHub: https://github.com/

B Documentation

Documentation for the Longitudinal PET/CT Analysis extension for 3D Slicer 4 is
available in the Slicer Wiki36. On this web page, a short description of the software, use
cases and an overview of the different GUI panels and their use are given.

Fig. B.1: Slicer Wiki page for the Longitudinal PET/CT Analysis extension

Moreover, a screencast demonstrating the workflow of the Longitudinal PET/CT
Analysis extension is also available online37.

Fig. B.2: Screenshot of the workflow demonstration video.

36 Longitudinal PET/CT Extension Documentation:

http://slicer.org/slicerWiki/index.php/Documentation/Nightly/Extensions/LongitudinalPETCT
37 Longitudinal PET/CT Extension workflow demonstration video:

http://youtube.com/watch?v=O7Di6UZDsf0&feature=youtu.be

C UML Class Diagrams

Fig. C.1: Detailed UML class diagram of the Model classes containing all

attributes and public operations.

 C UML Class Diagrams

98

Fig. C.2: Detailed UML class diagram of the View classes containing signal, slot

and other public operations.

C UML Class Diagrams 99

Fig. C.3: Detailed UML class diagram of the Controller classes, composed of the

main Logic class, its helper classes and the standalone DICOM plugin
class.

D Accompanying Questionnaire for Heuristic
Evaluation

Fig. D.1: First page of the questionnaire accompanying the heuristic evaluation.

 D Accompanying Questionnaire for Heuristic Evaluation

102

Fig. D.2: Second page of the questionnaire accompanying the heuristic evaluation.

D Accompanying Questionnaire for Heuristic Evaluation 103

Fig. D.3: Third page of the questionnaire accompanying the heuristic evaluation.

 D Accompanying Questionnaire for Heuristic Evaluation

104

Fig. D.4: Forth page of the questionnaire accompanying the heuristic evaluation.

D Accompanying Questionnaire for Heuristic Evaluation 105

Fig. D.5: Fifth page of the questionnaire accompanying the heuristic evaluation.

 D Accompanying Questionnaire for Heuristic Evaluation

106

Fig. D.6: Sixth page of the questionnaire accompanying the heuristic evaluation.

D Accompanying Questionnaire for Heuristic Evaluation 107

Fig. D.7: Seventh page of the questionnaire accompanying the heuristic
evaluation.

 D Accompanying Questionnaire for Heuristic Evaluation

108

Fig. D.8: Eighth page of the questionnaire accompanying the heuristic evaluation.

Note: The screenshots used in this questionnaire may contain some minor differences when compared to the GUI

widgets presented in this work. This is due to the fact that the screenshots were taken from a preliminary
development version of the extension. However, these differences do not affect the validity of the heuristic
evaluation (see section 3.4.3) since only feedback from the free text answers were used in that one.

