
HEIDELBERG UNIVERSITY HEILBRONN UNIVERSITY

MASTER’S THESIS

Design and implementation of a dedicated
planning and implementation software

system using a driving simulator to support
occupational therapy intervention and data

collection in the context of studies

Author:
Hendrik GRAUPNER

Supervisors:
Prof. Dr. Diana SCHMIDT

Dr. Matthew CRISLER

January 30, 2014

Correspondence E-Mail Address:
hendrik.graupner@alumni.uni-heidelberg.de

hendrik.graupner@alumni.uni-heidelberg.de

Abstract

The aim of this master’s thesis is the design and implementation of a dedicated
software system, for planning and implementation of occupational therapy in-
tervention and research studies, in a driving simulator environment.

In the first part, the concept based on user requirements is presented. It consists
of architectural patterns and guidelines with the main focus on utility and appli-
cation security. The result of this part is the design of a web application which
supports integration in a clinical as well as a research environment.

The second part presents the reference implementation of the previously intro-
duced concept. It was developed under a case study in a research facility which
hosts a driving simulator. A close cooperation and the influence the researcher’s
experience led into a product which provides advanced usability for the target
users.

In conclusion, the thesis validated the concept indirectly under a testing phase
of the reference implementation. It provides the base for a follow-up project to
refine the software product and extend the concept to different fields of applica-
tion.

Keywords: therapy planning, study planning, data collection, driving simula-
tor, web application, java

Contents

List of Figures III

List of Tables IV

List of Code Listings IV

List of Acronyms V

Glossary VII

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Case Study . 2
1.4 Objective . 4
1.5 Document Structure . 4

2 Basics 5
2.1 Terms . 5
2.2 Current CDS Procedure . 6

3 Concept 11
3.1 Requirements . 11

3.1.1 Methods of Gathering . 11
3.1.2 Requirements Specification 13

3.2 Architecture . 18
3.2.1 Client Architecture . 19
3.2.2 Server Architecture . 22
3.2.3 Input Validation . 24
3.2.4 TDF Format . 26
3.2.5 Security Considerations 26

I

4 Implementation 29
4.1 Implementation Environment . 29

4.1.1 Programming Language: Java 29
4.1.2 Frameworks . 30
4.1.3 IDE: Eclipse . 32
4.1.4 Hardware in CU-ICAR . 32

4.2 Implementation Details . 33
4.2.1 Modular Code Structure 33
4.2.2 Client Implementation . 34
4.2.3 Server Implementation . 35
4.2.4 Security . 44

4.3 User Guidance . 47
4.3.1 Task Upload . 47
4.3.2 Client Creation . 48
4.3.3 Protocol Creation . 49
4.3.4 Protocol Implementation 52
4.3.5 Result Review and Export 56

5 Conclusion 59
5.1 Validation . 59

5.1.1 Communication with other Systems 59
5.1.2 Functions . 60
5.1.3 Target Users . 60
5.1.4 Legal Constraints . 60
5.1.5 Expected Benefits . 61

5.2 Outlook . 62

Appendices 63
A HIPAA Extracts . 63
B Format Definitions . 64

B.1 Task.dtd . 64
C Code Extracts . 65

C.1 UiBinder Example . 65
C.2 DaoFacade.java . 67
C.3 Service Layer Interfaces 68
C.4 AuthenticationFilter.java 70

Bibliography 71

Affidavit 75

II

List of Figures

1.1 DriveSafety CDS-250 . 3

2.1 Screenshot: Data collection sheet 6
2.2 Screenshot: Comparison criteria sheet 7
2.3 CDS session tools . 8
2.4 Screenshot: Modified comparison criteria sheet 10

3.1 Use case diagram: Basic functionality 14
3.2 Diagram: Basic system architecture 18
3.3 Design pattern: MVP . 19
3.4 Design pattern: Event bus . 20
3.5 Diagram: Server architecture . 22
3.6 Activity diagram: Entity creation including validation 25

4.1 Modular source code structure 33
4.2 Exemplary illustration: Implementation of MVP pattern 34
4.3 Class diagram: Top level domain 36
4.4 Class diagram: Task . 37
4.5 Diagram: Audit logging . 41
4.6 Diagram: Server’s web service layer 42
4.7 Class diagram: GWT RPC service 43
4.8 Screenshot: Task upload . 48
4.9 Screenshot: Client creation . 49
4.10 Screenshot: Plan creation . 50
4.11 Screenshot: Plan creation: Task configuration 51
4.12 Screenshot: Plan . 52
4.13 Screenshot: Plan implementation 53
4.14 Screenshot: Plan implementation: Measurement input 54
4.15 Screenshot: Plan implementation: Measurement input: Success . 55
4.16 Screenshot: Plan implementation: Half completed 56
4.17 Screenshot: Result . 57
4.18 Screenshots: Plan and client results 58

III

List of Tables

3.2 HIPAA: Paragraphs and inferred requirements 17

List of Code Listings

4.1 DaoFacadeImpl.java: persist(AbstractEntity) 39
4.2 AuthenticationServiceImpl.java: authenticate(String, byte[]) . . . 40
4.3 DataServiceImpl.java: isClientInUse(long) 40
4.4 JPA Named Query: User.FIND BY USERNAME 45
4.5 JSNI: mailto(String, subject) . 45

IV

List of Acronyms

API Application Programming Interface

CDS Clinical Driving Simulator

CU-ICAR Clemson University International Center for Automotive Engineering

CS Control Software

CSV Comma-separated Values

DAO Data Access Object

DTO Data Transfer Object

GWT Google Web Toolkit

HHS United States Department of Health and Human Services

HIPAA Health Insurance Portability and Accountability Act

HTML Hypertext Markup Language

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

Java EE Java Platform, Enterprise Edition

JAX-RS Java API for RESTful Web Services

JAXB Java Architecture for XML Binding

JDBC Java Database Connectivity

JPA Java Persistence API

JSNI JavaScript Native Interface

V

JSON JavaScript Object Notation

JVM Java Virtual Machine

LDAP Lightweight Directory Access Protocol

LTS Long-Term Support

MVC Model View Controller

MVP Model View Presenter

NIST National Institute of Standards and Technology

NSA National Security Agency

OWASP Open Web Application Security Project

POJO Plain Old Java Object

SHA Secure Hash Algorithm

SOA Service-oriented Architecture

SOP Same Origin Policy

SQL Structured Query Language

SS Simulation Software

RAM Random-Access Memory

REST Representational State Transfer

RPC Remote Procedure Call

TDF Task Definition File

TLS Transport Layer Security

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

XML Extensible Markup Language

XSRF Cross-Site Request Forging

XSS Cross-Site Scripting

VI

Glossary

client
A client is the person who attends a plan. In the case of therapy a synony-
mous term is patient and in study terminology it is a participant.

criterion
In this context a criterion is the configuration of a measurement to be a
task implementation’s termination condition. E.g. the measurement errors
would be a criterion if the goal of an implementation session was achieving
a total error count of less than five in one trial.

implementor
An implementor is the person who supervises the implementation session
with a client.

measure
Measures are available data fields of a specific task (e.g. mean speed in
mph).

measurement
A measurement is the actual value of a measure at implementation time.
E.g. a measurement of mean speed could be 54 mph.

parameter
Parameters are configuration options of tasks. E.g. a task could provide the
choice between easy, medium, and hard for the parameter difficulty.

plan
A plan is an assemblage of tasks one or a set of clients are supposed to
attend. Another, more clinical, term used is protocol.

property
Properties are used to specify subtasks more detailed. E.g. a task could

VII

come with three subtasks which contain the same measures. To have a
better way of distinguish them each could have a property called target
speed with the values 35 mph, 45 mph, and 55 mph.

task
A task is something a client is asked to do during therapy or a study. It can
be a driving simulator scenario, a physical exercise (e.g. push-ups) etc.

VIII

1

Introduction

This chapter introduces the topic of this thesis. The reader learns what the back-
ground and the importance of the work that is presented in the following chap-
ters, relevant terms, and the document’s top level structure.

1.1 Background

In medicine one of the most important and at the same time challenging pro-
cesses is the elaborate planning of procedures involving patients. The outcome
is a protocol which consists of instructions for particular sessions. Those proto-
cols form the base of effective and efficient medical care in clinical routine and
high quality data in medical research. Because of the versatile nature of those
environments this process of planning happens under many different circum-
stances. However, the goal of assembling the optimal arrangement of medical
measures remains the same.

The processes of medical therapy and study planning are difficult and time-
consuming. This is especially true if the protocol involves a high number of par-
ticipants and complex exercises. In real life it is often the case that this planning
process is not as computer-aided as it could be. The reasons are that software
solutions are usually hard to integrate into processes and technical infrastruc-
tures and/or scare off potential users by requiring a lot of effort to familiarize.
This causes the remaining of traditional approaches of paper based protocols
or the use of suboptimal software products (e.g. text editing or table handling
software).

1

2 1. INTRODUCTION

A software solution that is capable of replacing the traditional approaches can
help saving a clinician’s as well as a researcher’s most valuable resource: time.
In addition it brings the advantages of modern information technology like re-
utilization of previous work and improved digital data collection and handling.
The latter is particularly useful if the process involves a data producing device
that is capable of communicating with other computers. This thesis specializes
in the Clinical Driving Simulators (CDSs), one particular type of such devices.

1.2 Motivation

Simulators have a growing importance in driving related occupational therapy,
skill assessment, and research. “Driving simulators offer a safe alternative to
road testing, and because they can be made readily available in laboratory set-
tings, they allow for more careful control of clinical parameters than is possible
with epidemiological study designs.” [1] They are mainly installed in clinical
and research environments.

The advantage of a research setup is the ability of data post processing. After
a simulator session, stored data files can be retrieved from the simulator’s hard
disk and prepared for further analysis. In a clinical working process the data
is required right when it occurs. This natural lack of flexibility is not yet fully
compensated. It requires a data retrieval strategy and the according tools that
are capable of fetching data in real time and providing it in a processable format
immediately.

A real life want is the motivation for this thesis. The issues described are not
exclusively true for this particular scenario but for other clinical data producing
systems, too.

1.3 Case Study

This thesis is practically oriented and aims to develop a solution for a real life
want. The cooperation with the human factors research division of Clemson
University International Center for Automotive Engineering (CU-ICAR)1 provides
access to the field of application.

1http://www.cuicar.com/

http://www.cuicar.com/

1. INTRODUCTION 3

One of the researchers’ tasks is the development and testing of new scenarios on
the DriveSafety CDS-250 (see figure 1.1) hosted there. The CDS is a complex
device that represents the cockpit of a car, simulates interactive operations of
the car in a variety of driving environments, and also supports other interactive
clinical activities. It includes multiple computers to run the simulation and fetch
occurring data.

Figure 1.1: The DriveSafety CDS-250 main components are a car’s cockpit, three moni-
tors, and computers in its base. An additional computer device (e.g. a laptop) is used to
control the system.

The increasing complexity of studies involving the driving simulator generated
the need for a computer-aided solution to support study planning and imple-
mentation processes. This thesis uses the CDS-250 laboratory at CU-ICAR as an
exemplary case study for a potential application of its concepts. In return the
reference implementation, the Protocol Manager, is customized to fit the par-
ticular needs and expectations of this research division. In addition this work
profits from the experience of the interdisciplinary team at the junction point of
psychology, engineering, computer science, and medicine.

4 1. INTRODUCTION

1.4 Objective

This thesis’ objective is the design and proof of a software concept that supports
the planning and data collection processes in clinical therapy and medical re-
search, involving a driving simulator. To achieve that, the core functionality is
support of the work of clinicians and researchers in a way that increases time
efficiency and assists error avoidance in complex scenarios. Even though the
environment of interest involves a driving simulator the solution requires to be
flexible enough to not be restricted to this device to support a variety of different
setups and different data sources in a particular setup. The reference implemen-
tation provides an example and proof of the concept developed in cooperation
with end users.

1.5 Document Structure

This thesis consists of the following chapters subsequent to the introduction.

Chapter 2 - Basics introduces terms and describes the current procedure of
the case study. If the reader is not familiar with the case study’s setup, it is
recommended to begin reading with this chapter.

Chapter 3 - Concept introduces the software concepts. It shows the process of
designing the system and the resulting architecture. This concept tries to solve
the existing issues and forms the base for the reference implementation.

Chapter 4 - Implementation presents the implementation of the Protocol
Manager. This chapter’s goal is to impart the structures of the software and
explain key components using code examples. Another focus is explaining user
guidance using User Interface (UI) screenshots.

Chapter 5 - Conclusion critically discusses the results in terms of achieving
of the goals. Finally, an outlook concludes this thesis by giving suggestions for
followup projects.

2

Basics

This chapter describes pre conditional knowledge for the thesis. An introduction
of terms used through the whole document is a complement to the glossary on
page VII. The chapter’s main part is a description of the case study’s current
driving simulator procedure, to impart basic knowledge of the environment and
understand the importance of the following work.

2.1 Terms

This document provides content at the junction between medicine and computer
science. Since each of those disciplines have their own terminology, it is neces-
sary to clarify the meaning of terms.

This thesis’ main subject is the planning of clinical therapy and medical research
protocols. The term plan is used synonymous with protocol. While from the
code point of view “a planner creates a plan”, a clinician might say: “a therapist
creates a protocol”.

A person who attends a therapy session is typically a patient or, in the case of a
research study, a participant. The term that describes both is client. This client
(person) should not be confused with the client (software) that is a common part
of a web application design pattern in software development.

The exercises a client executes during an implementation session of a plan are
called tasks. A task can be of physical nature (e.g. push-ups) or involve a device
that measures certain target values (e.g. heart rate while running on a treadmill
for five minutes). As these examples illustrate, tasks typically produce data that

5

6 2. BASICS

is stored for later use (e.g. analysis). A set of measurements is called implemen-
tation result. Results are typically assembled plan-wise or client-wise.

2.2 Current CDS Procedure

The DriveSafety CDS-250 was developed for a clinical operating environment
to assist occupational therapy and assess driving skills after treatment. A sec-
ondary use is the performance of driving related research studies. The following
describes the CDS procedure for research studies at CU-ICAR.

An important part of the preparation of simulator sessions is the creation of
plans. A plan describes the procedure of therapy, assessment or a study, in-
volving a collection of clients. The creation requires expertise, experience, and
knowledge of the client’s as well as the simulator’s capabilities. In addition clin-
icians always bear a high responsibility for patients’ health and well-being. For
those reasons plan creation is typically the work of a lead therapist.

Figure 2.1: The data collection sheet consists of a matrix of clients (columns) and target
measures (rows). This example shows side-by-side comparison to determine clients’
relative performances.

In the case study at CU-ICAR, the procedure currently involves a combination of

2. BASICS 7

paper and digital text documents. While the actual plan is a list of tasks sup-
plemented with instructions, data collection happens in Microsoft Excel sheets.
Figure 2.1 (page 6) shows an exemplary section of a realistic data collection
sheet which forms a matrix of clients (columns) and target measures (rows).
As the numbers of columns and rows increase, data collection becomes more
complex. In addition the current degree of complexity is a result from the past
development of data collection requirements. In early studies all clients followed
the same procedure, whereas today’s studies require more complicated methods
(e.g. side-by-side comparison to other clients’ data).

Side-by-side comparison is the origin for a criteria based procedure to assess
the individual performance of a client. A criterion is a numerical surrogate for
success. If it is met, the trial was successful and the procedure moves on to the
next task. Otherwise the current task has to be repeated. Figure 2.2 shows a
Microsoft Excel spreadsheet that calculates criteria for individual clients.

Figure 2.2: This spreadsheet is used for determining comparison criteria in a study.
They are calculated for each client individually based on former performances.

The paper based instructions and notes, Microsoft Excel sheets for data collec-
tion, and a tablet computer running the simulator’s Control Software (CS) (see

8 2. BASICS

figure 2.3a) are at least three different systems a implementor has to use during
a session while following this pattern: The implementor introduces the task by
reading an introduction, displayed in the CS, to the client and answers ques-
tions. After that the client performs the task. At the end of each trial a list
of measurements is displayed on the simulator’s monitors and the implementor
types them into the data collection sheet. According to the criteria setup and the
actual performance, another trial of the same task may follow or the procedure
moves on. During the whole session the implementor is not only responsible for
data collection, but in the first place assuring the client feels well by periodi-
cally issuing a simulator sickness questionnaire and hand-writing the values on
a data sheet. Figure 2.3b shows a typical set of documents an implementor has
to handle while controlling the simulator.

(a) The simulator CS provides an interface to configure
and control specific simulator scenarios.

(b) A lot of documents are in-
volved in the process. Most
of them are paper based and
involve data sheets, question-
naires, and instructions.

Figure 2.3: An implementor has to handle several different tools during a simulator
session.

This procedure is grown over the years and established in the daily routine of
clinicians and researchers working with the simulator. It produces reliable, well
documented data. However, with growing complexity of a criteria based data
collection, problems have been noticed. Matrices, which are large and hard to
read, are unavoidable using a Microsoft Excel based data collection. It is natural
that typing in measurements during a high number of simulator sessions contains
errors. The following error types were identified.

2. BASICS 9

Data Entry Error Type 1

The individual criteria calculation in figure 2.2 (page 7) is based on data entered
in figure 2.1 (page 6). For the calculation to work it is crucial that a client’s data
is entered in the correct column. If this is not the case, criterion calculation is
invalid for this client. Columns AM through AP in figure 2.2 show examples of
data that was entered into wrong columns initially, and corrected when the error
was discovered. Two clients did move on in the procedure when they actually did
not pass their individual criteria (see the red cells AM155 and AO155 in figure
2.1). They had to be subsequently excluded from the study and replacement
clients were recruited instead, because every client could only participate once.

Data Entry Error Type 2

The second data entry error type is typographical error in a data field. For exam-
ple entering a value of 0.50 while it was 50 in reality can make the implementor
believe that the client passed a criterion when it actually did not happen. This
error type occurred in row 156 in figure 2.2 (page 7). Values in this row were
expected to be integers between 35 and 85 seconds. If mistyped values are not
discovered right away, it results in invalid data and the client has to be replaced
in the study.

To rectify both error types a modified spreadsheet was developed (see figure 2.4,
page 10). Each client has not only an individual file which includes the client ID
in the filename, but also all other clients are blacked out to prevent data entering
into the wrong column. In addition the exact criterion is given for each row to
remind the implementor of the correct syntax.

10 2. BASICS

Figure 2.4: The modified spreadsheet tries to prevent both error types and is provided
in a separate file for each individual client.

3

Concept

This chapter shows the concepts of the software design. It begins with an in-
sight into the origins of the project and the problem. First the gathering of user
requirements from several sources is shown. The conceptual solution to meet
the identified requirements is the major part. It covers the software system’s
components and consists of concrete architectural patterns and implementation
guidelines.

3.1 Requirements

The origin of the concept is the definition of requirements. Drawing on the
driving simulator team’s experience under the case study, helped to develop a
real life oriented requirements specification.

3.1.1 Methods of Gathering

Personal interviews with with the researchers were the most important source
of information. Together with a following observation, they revealed their ex-
pectations ins terms of usability as well as utility of a later software product and
helped to understand processes, structures, and the working environment.

11

12 3. CONCEPT

3.1.1.1 Personal Interviews

The strategy was to use the knowledge and experience of the driving simula-
tor’s research team to cover requirements of all involved perspectives. It is an
interdisciplinary team of scientists and engineers, who work in cooperation with
clinicians, patients, and other researchers. Meetings and interviews happened
not only at the beginning of the project, but also during the development to syn-
chronize expectations with the actual progress and identify possible problems
early.

The initial interview series began with a potential research end user to determine
the core functionality from the data analysis perspective and get an idea of the
expected results. Mr. Evan Lowe, who is performing a study using the CDS, gave
a strong insight in the expectations for the result data and possible features to
prevent errors in the first place.

Interviews with a clinical experienced researcher, Dr. Johnell Brooks, helped to
refine the core functionality, identify additional features to increase usability, and
produce first UI sketches. Results are the UI’s terminology, utility features, and
usability aspects. The latter is especially important to develop a product that is
accepted by the target users.

Technical requirements developed from dialogs with the team’s software devel-
oper, Dr. Matthew Crisler, to fit the new software into the pre-existing technical
infrastructure. A relevant part of the technical considerations was figuring out
the possibilities and constraints of the simulator’s data transmission abilities. In
return we also had to clarify missing interfaces on the simulator side to allow
full integration with the new software components.

3.1.1.2 Observation

The performed CDS session was a series of driving scenarios, supervised by Mr.
Jimmy Bacon. He gave insight into the procedure of an implementor guiding a
client. This observation showcased the workflow during a simulator session.

3.1.1.3 Statutory Regulations

The adherence of statutory regulations and laws regarding data security becomes
mandatory as soon as real patient data is processed. To prepare the software’s
implementation for practical use they are part of the requirements.

3. CONCEPT 13

Personal data, especially patient data, is always very sensitive. To protect peo-
ple’s privacy and prevent data abuse, certain statutory regulations exist in the
USA. The applicable law for this scenario is the Health Insurance Portability and
Accountability Act (HIPAA) because the target environment is hosted by a “[. . .]
health care provider who transmits any health information in electronic form
[. . .]” [2, §160.102(a)(3)]. Title II of the law defines i.a. national standards for
administrative and technical procedures which involve health data. This makes
title II of particular importance for this thesis.

3.1.2 Requirements Specification

The requirements specification is based on the standard of the IEEE [3]. It spec-
ifies the goals to be accomplished by a software design.

3.1.2.1 Product Perspective

The simulator infrastructure in the research laboratory has two major soft-
ware components for potential interaction. They are the simulator’s interac-
tive Simulation Software (SS) and Control Software (CS). It is the author’s as-
sumption to find similar setups in other simulator environments. To make data
transmission with those systems possible, a commonly usable server-side web
interface is necessary.

The SS runs on three independent servers and operates the simulator by man-
aging available driving scenarios, generating video output, and producing mea-
surements during implementation sessions. The CS is used to interact with the
simulator’s operating system. Since communication with the SS is already up
and running and the CS is self-developed, it is a valid option to limit the exter-
nal interfaces to this software. This approach minimizes the effort to implement
according interfaces because it involves only one external system. In addition it
is conceivable that in other setups a CS is also easier to modify and extend than
the SS.

Often the tasks performed during a session of therapy or study are not exclusively
involving one source of data. For example a common addition to a single task or
a series of tasks could be a questionnaire. From this follows that a software for
data collection must be able to process data independent from its source. This
requires a generic interface design, which is unspecific to the CDS. It further
allows the concept and parts of the software to be reused in completely different
environments which have the same goal of data collection.

14 3. CONCEPT

3.1.2.2 Product Functions

The product’s functions correlate to the identified use cases. Figure 3.1 shows
the core use cases in a UML use case diagram representation. The actors are
human users and the software system. Two user roles, planner or implementor,
exist. Depending on the field of application a user may have both roles. A plan’s
implementation requires its previous creation.

Figure 3.1: The system’s basic functionality is represented in a UML use case diagram.
It is annotated with goal levels by Cockburn’s notation [4, pp. 62sqq.].

3. CONCEPT 15

(1) Create Plan ! This is the origin of data collection. Its preconditions
are declared as subfunctions.

1. The planner opens the plan creation form.
2. A name has to be set and tasks have to be added.

Each task has to be specified in terms of its pa-
rameters and criteria. Assigning clients is op-
tional and can also be done at implementation
time.

3. When the user is done and all fields are validated
the new plan will be persisted and available for
implementation.

(1.1) Create Client – This is a subfunction of the plan creation and imple-
mentation. This function may also be available in the
creation and implementation views. However, a client
has to exist in the system before he can be assigned to
a plan.

1. The planner/implementor opens the client cre-
ation form.

2. The only required field is an external ID (e.g. of
a patient management system) which serves as
an unique identifier. Other optional fields (e.g.
names) can be entered.

3. When the user is done, all fields are validated,
and the unique identifier is not duplicated the
new client will be persisted and available for as-
signment to a plan.

(1.2) Upload Task – This is a subfunction of the plan creation and can only
be done by a user in the planner role. Only existing
tasks can be added. A task can not be edited or man-
ually created using a form, because it would interfere
with the intention of keeping the data synchronized
with the according external system. The procedure is
exporting a task definition file from its host system and
importing it to this system.

1. The planner opens the upload dialog and chooses
a path to the according file on his device.

2. If the file is valid and the task is not duplicated it
will be persisted and available for plans.

16 3. CONCEPT

(2) Implement Plan ! The implementation can be suspended before it is fin-
ished. If the user chooses to do so the current session
is stored and can be resumed at a later time.

1. The implementor opens the plan implementation
form.

2. He/she chooses an assigned client, assigns an ex-
isting one, or creates a new one.

3. From a list of available tasks one can be chosen to
start data collection. According to the planner’s
choice the list might have a fixed order or not.

4. The implementor types in measurements trial-
wise and as they are available.

5. The input is validated, criteria are checked, and
the user will be notified if the criteria are passed.
This step may be repeated until passed or can-
celed.

6. When the implementor is done the session will
be persisted and available for reviewing and pos-
sibly resuming.

(3) Audit Log – The system keeps track of data access and alteration
using login information.

(3.1) Authenticate – This is a subfunction of audit logging. To identify the
user, he/she has to log in with a unique username and
a secret password before data access is allowed.

3.1.2.3 User Characteristics

Two types of users are intended to use the system. The first type is a clinician
who will use the system for occupational therapy or skill assessment. The second
type is a data analyst who will use the system for data collection, e.g. to support
a study. Some users may be allocated to both types. For a software product to be
accepted by clinical users, it is unavoidable to use a clinical terminology.

3.1.2.4 Constraints

For automatic data transmission the whole system is constrained by intranet ac-
cess. Since the server application as well as external data sources are exclusively

3. CONCEPT 17

accessible over the intranet, no functionality will be available on a workstation
which is offline.

The quality of a plan is constraint by the quality of the task specifications it is
based on. This means, only measurements provided by the specification files can
be recorded at implementation time. Also, accuracy of values can not be higher
than provided by external data sources.

The technical safeguards stated in NIST [5] are mandatory for this software
project. Table 3.2 gives an overview over the relevant paragraphs (see appendix
A, page 63) and the inferred requirements.

§164.312(a)(1) unique usernames, automatic session termina-
tion, automatic data encryption and decryption

§164.312(b) audit logging of any access, alteration or dele-
tion of health data

§164.312(c)(1) database encryption, versioned backups, and ac-
cess control

§164.312(e)(1) ensured transmission data integrity, transmis-
sion encryption

Table 3.2: The HIPAA obligates several requirements for applications that process pa-
tient related data. Those are the relevant paragraphs and their inferred requirements
for this thesis’ solutions.

Resulting from those safeguards the systems main functions can not be used
without logging in. Due to the HIPAA undisputed authentication (e.g. via user-
name and password) is necessary to access personal data. In addition this au-
thentication will be the base of audit logging.

3.1.2.5 Assumptions and Dependencies

This requirement specification assumes the use in a driving simulator environ-
ment. It tries to lead into a concept that is not exclusive to this setup. However,
it can not be assured to meet all requirements of a different, particular scenario.

It is further assumed that the use happens in the USA. Requirements regarding
software security seek to satisfy regulations stated in the HIPAA and to issue
the responsibility towards personal data of clients. However, different principles
may apply in other countries. If results of this document are ever used outside
the USA, the statutory regulations in this region have to be adapted first.

18 3. CONCEPT

3.2 Architecture

This section presents the designed architecture of the software system. It serves
as a guideline for software products that have the goal of compliance with the
requirements specified in section 3.1.2 (page 13).

The thesis’ duration of six months restricted the implementation of the whole
concept because a simulator-side interface for communication with a new soft-
ware system could not be completed in time. To still achieve the goal of provid-
ing a functional implementation by the end the development happened in two
steps. The software temporarily works without direct communication with any
external system at the expense of more manual user interaction. As a result the
following architecture supports both steps of implementation.

The web application it is based on a client server architecture pattern. Figure 3.2
shows the architecture with two client applications: the planning client and the
implementation client. While the planning client is used for the creation of study
and therapy plans, the implementation client provides the required functionality
for data collection. Both clients communicate independently with a web server
application. The server has access to a database that stores the system’s data
(e.g. tasks, measures, etc.).

Figure 3.2: The software system’s basic architecture consist of two client applications
(for planning and plan implementation) and a server application with database access.

The reason for the client split is a separation of functionality to allow later inte-
gration of the implementation side into another software product, without the
need to adapt the planning client. Another advantage is reduction of the applica-
tion size a user has to download and consequently a higher performance. Users
who only use one of the clients will not have to download the other one. The
tradeoff is redundant code downloads which will come from the shared code
base. Users who want to use both clients will download parts of the code twice.

3. CONCEPT 19

3.2.1 Client Architecture

The fundamental design pattern for the clients’ architecture, Model View Presen-
ter (MVP) [6], is shown in figure 3.3. Its prevailing benefit is a clear separation
between model and view. This allows changes in each of them without having to
change the other one. The adaption happens in the presenter layer, which is at
the same time easier to reuse across the software. It was chosen over the more
traditional pattern Model View Controller (MVC) [7] for the reason of the strong
decoupling focus, which also improves the unit testing capability.

Figure 3.3: The Model View Presenter (MVP) design pattern separates model, presenter,
and view. The arrows show associations between those layers.

MVP’s variation that is used is the Supervising Controller pattern [8]. The model
layer is simple and represents the abstract data model. It is presented to the
user by the view layer which has a loose linkage to be easy replaceable (e.g. to
add support for mobile devices). Views handle user input in terms of browser
events, while higher logic is performed by presenters. A one-to-one-relationship
between views and presenters allows each presenter to observe its view and react
to events. In essence this means, the presenters update the model and views read
the data from there.

Presenters need to exchange data between each other because views can not di-
rectly interact with other views. This cross-presenter communication uses the
Event Bus pattern (see figure 3.4, page 20), which is a variation of the Observer
pattern [9]. Instead of heaving multiple independent observer relationships one
object, the event bus, broadcasts and filters notifications. Observers can sub-
scribe to the bus for specific events. In this application the presenters are ob-
servers.

20 3. CONCEPT

Figure 3.4: The event bus pattern defines a way of communication between units of the
software that do not know each other. Any of them can send events to the bus and be a
listener to any event of interest.

The final concept defines a standalone client application for planning and an in-
tegrated client for implementation. In this context integrated means to extend
an already existing CS of the simulator for the according functionality. The in-
tegrated solution takes advantage of the fact that a dedicated CS already has
to have communication with its simulator set up. This solution creates the re-
quirement for the server application to communicate with two potentially totally
different types of clients. Two separate code bases for the clients may lead to in-
consistency in formats, terminology etc. which has to be taken into consideration
while development of the software.

The interim concept specifies two standalone client applications: the planning
client and the implementation client. While the planning client is used for the
creation of study and therapy plans, the implementation client provides the re-
quired functionality for data collection. For the final concept an implementation
client is not mandatory but can still be useful. A plan may contain physical tasks
(e.g. sit-ups) together with simulator tasks. In this case the use of the simula-
tor’s CS may more inconvenient than useful. Another scenario is an environment
where no dedicated CS exists or it can not be extended.

Some functionality overlaps both clients. In the case of the standalone imple-
mentation client it is a good programming paradigm to share code. The advan-
tages are high maintainability, avoidance of redundant code, and easier testing.
Shared functionality involves login functionality, user preferences and manage-
ment, and layout elements.

3. CONCEPT 21

3.2.1.1 Planning Client

The planning client’s function is the use case of plan creation. Its preconditions
are introduction of clients and tasks to the system. As a consequence this ap-
plication has three segments: client management, task management, and plan
creation. The server’s interface for the planning client functionality must provide
authentication and transmission of the three entities (client, task, and plan) in
terms of storing and requesting.

Client management begins with a form for creation. It must gather identifying
information such as names and an ID to match it to an external list or system.
Once created editing must be possible. Deletion can only happen if no data is
recorded for the person, in order to prevent data loss. An overview lists all clients
known to the systems and allows browsing the information of each entry.

The base of task management is uploading of a Task Definition Files (TDFs)
from the user’s computer to the server. Browsing and deletion mechanisms are
the same as in client management. Editing is not allowed, in order to prevent
inconsistency with the task specification on its external host device.

Plan creation basically consist of a form to assemble tasks and configure their
criteria. Optionally clients can be assigned at this point. This function is not ex-
clusive for the planning side to increase an implementor’s flexibility. Reviewing,
editing, and duplicating are mandatory functions to ease the work with plans.
Deletion can only happen if no data has been collected yet.

3.2.1.2 Implementation Client

The implementation client provides plan implementation functionality, which is
basically data collection. Implementation requires prior creation of the plan.
The goal is to collect data and make it available for further analysis. The re-
quired server interface functionality consist of authentication and transmission
of clients, tasks, plans, and implementation results.

The implementation form presumes prior selection of a plan and a client. It
provides a list of available tasks and for each task data field for measurement
input. In conjunction with data collection criteria checking is performed. This
way the implementor receives information about the client’s passing status in
real time.

Subsequent to implementation the results become available for review. If the
data collection is not complete, a resume function allows to split implementation

22 3. CONCEPT

into multiple sessions.

3.2.2 Server Architecture

The server application’s purpose in the software system is to provide services
to the clients. Those service requirements deduce from the clients’ expected
functionality introduced in the previous sections 3.2.1.1 and 3.2.1.2 (page 21).

Figure 3.5 shows the server’s Service-oriented Architecture (SOA) [10] which is
based on a layered structure. Each layer has a clear purpose. The privacy in-
creases from left to right: web services are publicly available for requests while
the database is the most sensitive part of the software system. Functionality is
revealed using web services. The benefit is a loose coupling to client applica-
tions. Any other software that is capable of using the same protocol and knows
the expected formats can communicate with the server application. The net-
work protocol used for communication is today’s standard, HyperText Transfer
Protocol (HTTP).

Figure 3.5: The web server architecture has three internal layers: web service layer,
service layer, and data access layer. Via a public interface communications with client
applications and has private access to a database.

Requests arrive at the server’s external interface: the web service layer. Indepen-
dent from its source and content any request will be intercepted by an authen-
tication filter. If it is not an authentication request, a valid session has to exist
or the filter refuses it. Valid requests are forwarded to the according web service

3. CONCEPT 23

they addressed. Web services extract and check data from incoming requests
and pass it to the according internal services. Functions required on the web
interface are:

• Authentication with username and password

• Client storage, editing, deletion, and demanding

• Task uploading, deletion, and demanding

• Plan storage, editing, deletion, and demanding

• Implementation result storage, extension (after a suspended session), and
demanding

The service layer contains the application’s higher logic. It is composed of mod-
ules for authenticating users (authentication service), database access (data ser-
vice), and assembling of downloadable documents (data export service). The
authentication service uses session management to store and provide user data.
Data related requests are processed by the data service. It communicates with
the data access layer to gain indirect database access. Pre-processing of raw data
(e.g. TDFs) happens here. The data export service generates exportable files
from database entries. It is used to assemble implementation results for further
analysis.

The server’s base is the data access layer. Data Access Objects (DAOs) [11] com-
municate with the database, retrieve required data, and translate it to domain
objects. The domain is a dependency of all layers and has a simple design for
holding data. It contains no program logic.

3.2.2.1 Support of External Systems

All required functionality is already part of the concept’s first version for the ref-
erence implementation. However, support for external systems, mainly a simula-
tor CS, is required beyond this version. This concept suggests a Representational
State Transfer (REST) [12] based implementation, which provides the bene-
fits of simplicity, lightweight structures, and a resource efficient communication
paradigm. It is also widespread and supported by frameworks in any program-
ming language. In the case of the external CS being not flexible enough or
extensible at all, in practice the server application may have to be adapted ac-
cordingly.

24 3. CONCEPT

3.2.3 Input Validation

Input validation is one of the significant advantages dedicated software has com-
pared to a pure document based solution. Two types of validation are part of this
concept: validation of persistent entities and validation of data fields during data
collection.

3.2.3.1 Entity Validation

When the system persists an entity (e.g. a task definition) it is important to
check for structural and content-related errors first. Otherwise invalid data may
be persisted which will likely lead into data retrieval effort for the system’s ad-
ministrator or data loss. When an error is noticed during or before the process
of persistence the user is generally able to correct it right away.

The UML activity diagram in figure 3.6 (page 25) illustrates the generalized
procedure of entity creation. Editing is very similar because the only difference
is the starting point on the client application side. Validation has to happen on
both, client and server, sides. The client side check can prevent unnecessary data
transmission if the server will refuse the persistence request anyway. The server
side check is more important because it prevents, independently from client’s
validation, the persistence of corrupt data.

3. CONCEPT 25

Figure 3.6: This activity diagram shows the procedure of entity creation. Validation is
an important part and happens on client as well as server application side.

The actual validation parameters are very dependent on the particular entity
and the system’s domain structure. They have to include checks for collision
of unique identifiers, violation of non-empty data fields, occurrence of invalid
values, etc.

3.2.3.2 Standalone Implementation Client: Data Field Validation

A mechanism that helps to prevent typing errors (e.g. misplaced decimal points)
during data collection is input validation of each data field. It can only detect
violations of the anticipated range. Because measurement input validation is not
necessary for an automatic data collection process, this part of the concept only
applies for the standalone implementation client scenario.

The base for this kind of validation is the specification of a range of validity for

26 3. CONCEPT

every single measure in a task. For example a measure total time could have a
range of [1;360] in seconds. This means if the user tries to record a trial with a
time of less than 1 second or more than 360 seconds the system will display a
warning. This type of validation has to happen on client application side and in
real time. Informing the user about a violation of the anticipated range provides
a chance to correct the error right away when the data is still available.

3.2.4 TDF Format

Generally formats, for example of data transmission are decision during the soft-
ware development process, based on data models etc. In this particular case
an external system is addressed. This concept standardizes the format of the
Extensible Markup Language (XML) representation of TDFs (see appendix B.1,
page 64). This way it can be assured that task uploading works across different
implementations of the same concept.

Other formats, like implementation result files, are to specific to a certain envi-
ronment to standardize them.

3.2.5 Security Considerations

Especially for the reason that patient data is processed, any identity theft or data
leak will cause major legal and trust issues to the software’s operator. To make
sure the software system is protected from potential threats, those threats have
to be identified first.

The Open Web Application Security Project (OWASP) Foundation is an interna-
tional charitable non-profit organization with the goal of enhancing application
security all over the world. One of their services is the publishing of an annual
list of the ten most widespread web application security breaches. The Top 10 of
2013 [13] listed the following risks.

1. Injection

2. Broken Authentication and Session Management

3. Cross-Site Scripting (XSS)

4. Insecure Direct Object References

5. Security Misconfiguration

3. CONCEPT 27

6. Sensitive Data Exposure

7. Missing Function Level Access Control

8. Cross-Site Request Forging (XSRF)

9. Using Components with Known Vulnerabilities

10. Unvalidated Redirects and Forwards

Risk 10 is not considered relevant since the application does not require to
redirect and forward at all. Any communication with other systems will be
performed by the server application using the Application Programming Inter-
faces (APIs) defined in this concept. The risks 2, 4, 5, 6, and 9 have to be taken
into account during and after implementation because they follow from imple-
mentation details and specific use of technologies, libraries, platforms etc. They
can be revealed via code review and stress testing.

The relevant security breaches for this concept are 1, 3, 7, and 8. The following
provides guidelines to minimize those risks.

3.2.5.1 Injection

The relevant interpreters to take into account are the database query builder, the
JavaScript engine, and the user’s web browser. Other interpreted technologies
like LDAP are not necessary by concept and operating system commands should
not be used at all.

The safest way to prevent database injection is using prepared statements and
avoiding wildcards in their content [14, pp. 132-136]. Prepared statements pre-
define the query and escape “tainted” runtime parameters. They are available
in any programming languages. JavaScript and HTML injection are covered by
XSS, another type of code injection.

3.2.5.2 Cross-Site Scripting (XSS)

Preventing JavaScript and HTML injection, so called XSS, is an important task of
browser and browser plugin developers. However, there are some countermea-
sures Shema [14, pp. 67-78] in the hands of developer. Most of them are about
avoiding to write insecure code.

The code should provide a clear separation of trusted input (e.g. hard-coded
constant strings) and untrusted user or external source input. Untrusted strings

28 3. CONCEPT

should never be passed as unescaped JavaScript or HTML code to be executed by
an interpreter. When in comes to JavaScript, JavaScript Object Notation (JSON)
content is especially sensitive. Any JSON response from the server should be
considered untrusted to be safe against attacks involving server response forgery
or other kinds of manipulation.

In addition input validation of Hypertext Markup Language (HTML) forms, URLs
etc. prevents malicious code from compromising the system in the first place but
should not be considered safe without proper output validation and escaping.
Shema [14, p. 78] sums it up: “The primary line of defense lays within the web
sites themselves, which must filter, encode, and display content correctly and
safely in order to protect visitors from being targeted by these attacks.”

During implementation the developer also has to consider the safety libraries
he uses and potential security risks coming with calls of powerful JavaScript
functions.

3.2.5.3 Missing Function Level Access Control

An usual mistake programmers make is implementing access control only on the
client level of their software system. Since manipulation of a client application
is by far easier than manipulating the server, this flaw may cause unauthorized
access of server functionality. To prevent this any request has to be authorized
on server level again.

This concept solves the issue by dedicating an authentication filter which checks
session validity and user identity for every request. However, it is the developers
responsibility to not reveal any functionality, which requires authentication, in a
way that circumvents the authentication filter.

3.2.5.4 Cross-Site Request Forging (XSRF)

A common way to prevent XSRF is to include a secret session token in every
request’s content. This token may be a copy of the session ID or the hash of the
session cookie’s content. It prevents an attacker to circumvent the web browser’s
Same Origin Policy (SOP). The SOP protects a cookies content from unautho-
rized access. However, this measure alone does not protect from XSRF [15]. A
proper session expiration mechanism is mandatory. The mechanism expires a
session after a fixed amount of time or renews the session ID if the user is still
active.

4

Implementation

The Protocol Manager is the concept’s reference implementation. Its goal is to
prove the concept in terms of utility and make it testable. At the same time it will
be used in CU-ICAR. This chapter introduces the environment, implementation
details, and user guidance. It conveys a basic understanding of the software
while focusing on interesting aspects, since a whole code listing is not possible.

4.1 Implementation Environment

The development environment consists of decisions made by the author to im-
plement the designed concepts. The following introduces technology and tools
choices which led to the software product.

4.1.1 Programming Language: Java

The development of the Protocol Manager started from scratch and did not have
constraints in terms of technologies. For that reason the first decision had to
be the appropriate programming language. The focal points were data security,
maintainability, and extensibility. Today’s common programming languages like
C, C++, Java, Python, Ruby etc. can all meet those criteria. It depends more
on the frameworks used and the written code in particular. The author therefore
chose Java because this is the programming language he is most familiar with.
Experience with a particular technology is crucial for creating secure code. Other
advantages of Java are:

29

30 4. IMPLEMENTATION

• Certain long-term support (by Oracle)

• JVM is a controlled and secure runtime environment

• Extensive, use case specific, standard libraries (e.g. Java EE for web devel-
opment)

• Large variety of reliable third party libraries and frameworks

• Platform independence

There are also notable disadvantages which carry virtually no weight in this
scenario. Because the JVM comes with computation overhead the performance
may be worse than native languages like C. This is not an issue because the
Protocol Manager is a low performance application. From the user’s perspective,
network latency is far more noticeable than the server’s computation time of
any request. Another risk to mention is the possibility of reverse engineering.
A compiled Java file can be used to reconstruct the original source code. This
is only an issue, if the code is not secure, because reverse engineering helps an
attacker to find and abuse security issues. However, since the main focus of this
concept and implementation is security, it does not rely on keeping source code
secret.

4.1.2 Frameworks

The following frameworks available on the Java platform have been chosen to
integrate certain functionality. Focal points to make those choices were security,
lightweight code, and long-term success in the programming community.

4.1.2.1 Google Web Toolkit (GWT)

For web application development in Java a variety of frameworks do exist. As
a part of this decision it should be considered that wide spread frameworks are
usually more stable and secure, because large communities involve experience
in best practices and reliable implementation patterns.

By the time this decision was made Java-Source1 listed 67 different web appli-
cation frameworks. The decision was in favor of GWT2. Its most outstanding

1http://java-source.net/
2http://www.gwtproject.org/

http://java-source.net/
http://www.gwtproject.org/

4. IMPLEMENTATION 31

benefits are the variety of compatible libraries, useful IDE tools, and the innova-
tive compiler. From that follows a possible high level of security, efficient testing
and debugging options, as well as improved maintainability because the under-
lying client code is almost pure Java. The framework provides server application
libraries which allow an efficient communication with GWT client applications.

4.1.2.2 Jersey and Jackson

One important requirement of the server application is compatibility with REST-
speaking clients. The Java standard library defines a standard for that, called
Java API for RESTful Web Services (JAX-RS) [16]. Its reference implementation
is the framework Jersey3. It is lightweight and integrates well with Jackson.

Jackson4 is a lightweight Java JSON processor. In combination with Java’s stan-
dard implementation of Java Architecture for XML Binding (JAXB) [17] it pro-
vides a REST web service the ability to support JSON as well as XML data object
transmission.

4.1.2.3 EclipseLink

The Java standard library provides the Java Persistence API (JPA) [18] standard
for seamless mapping between Java objects and SQL. It requires Java Database
Connectivity (JDBC) [19] on the database side to provide a database specific
Java interface. The reference implementation of JPA 2.0 is EclipseLink5 which is
lightweight and robust and therefore meets this project’s requirements.

4.1.2.4 Log4j

The logging framework of choice is Log4j6. It provides a proper number of log-
ging levels, a useful message filtering system and the ability of logging to differ-
ent files and database tables at the same time.

3https://jersey.java.net/
4https://github.com/FasterXML/jackson
5http://www.eclipse.org/eclipselink/
6http://logging.apache.org/log4j/

https://jersey.java.net/
https://github.com/FasterXML/jackson
http://www.eclipse.org/eclipselink/
http://logging.apache.org/log4j/

32 4. IMPLEMENTATION

4.1.2.5 JUnit with EasyMock

JUnit7 is a powerful testing framework for Java. It can be used for integration
tests as well as unit tests. For the latter EasyMock8 is a helpful extension which
improves the mocking capability to isolate units of code. GWT supports JUnit for
client side testing which makes it an easy choice.

4.1.3 IDE: Eclipse

The perhaps most wide spread open source IDE for Java is Eclipse9. It has a
large community and an enormous amount of extensions. For example the GWT
development environment fully integrates with Eclipse. In addition it comes
with a lot of features that make a developer’s life much easy. Some of them are:
syntax coloring, pre-compile checking, code organizing support etc.

Other tools used in combination with Eclipse to organize builds, dependencies
and the code handling are: Apache Maven10, Jenkins11, and Apache Subver-
sion12.

4.1.4 Hardware in CU-ICAR

The productive server at CU-ICAR is a physical machine using an Intel Core2Duo
E7300@2.66GHz processor and 2GB RAM, running Ubuntu Server 12.04 LTS. It
is an Apache HTTP Server that uses Apache Tomcat as its Java servlet container.
The MySQL database is hosted on the same machine.

7http://junit.org/
8http://easymock.org/
9http://www.eclipse.org/

10http://maven.apache.org/
11http://jenkins-ci.org/
12http://subversion.tigris.org/

http://junit.org/
http://easymock.org/
http://www.eclipse.org/
http://maven.apache.org/
http://jenkins-ci.org/
http://subversion.tigris.org/

4. IMPLEMENTATION 33

4.2 Implementation Details

The implementation follows the concepts and guidelines described in chapter
3. This sections gives an overview over the software product developed for the
use in CU-ICAR. This document does not contain the entire software which
consists of more than 22,000 lines of code. Exemplary source code extracts of
key components are shown.

4.2.1 Modular Code Structure

The modular structure is the base for efficient and maintainable code. Since all
components are composed of Java code it is easy to have shared code bases (see
figure 4.1). Both clients share some model classes, logic, and view components.
To simplify transmission between server and clients a shared code module exists.
It includes Data Transfer Object (DTO) [20] classes and Java interfaces of the
web service.

Figure 4.1: The modular code structure provides a non-redundant and efficient organi-
zation of the source code.

This division of codes allows to build all separate applications with only the
necessary code included. For example the implementation client build is assem-
bled of the implementation client module, the client code base module, and the
shared code module. The web server includes the web server modules and the
shared code module.

34 4. IMPLEMENTATION

4.2.2 Client Implementation

The MVP is the architectural pattern of choice (see section 3.2.1, page 19). It
harmonizes well with the GWT framework, which has a lot of MVP support in-
cluded. The most relevant feature in this context is the addition of browser
history management via the Activities and Places framework. According to the
GWT-Project [21] in this context “an activity simply represents something the
user is doing” and “a place is a Java object representing a particular state of the
UI”. This means that activities are equal to presenters and places are used to
initialize a particular instance of the currently required activity. Figure 4.2 illus-
trates this concept using an exemplary extract of the Protocol Manager’s class
structure.

Figure 4.2: This illustration of the MVP pattern uses the example of plan display and
edit functionality. The diagram is inspired by Ramsdale [22].

4. IMPLEMENTATION 35

Model classes are simple Plain Old Java Objects (POJOs) which contain the data
to be displayed in UI fields. The view layer is loosely linked using Java interfaces.
Their implementations are exchangeable via configuration. This way the appli-
cation supports different view sets (e.g. desktop displays, mobile device displays
etc.). At the time of publishing the application included a set of desktop view
implementations.

A common technique to design browser UIs in GWT is the UiBinder framework.
The following statement describes how it works.

“At heart, a GWT application is a web page. And when you’re laying
out a web page, writing HTML and CSS is the most natural way to
get the job done. The UiBinder framework allows you to do exactly
that: build your apps as HTML pages with GWT widgets sprinkled
throughout them.” [23]

The example of an XML file (see appendix C.1.1, page 65) and a Java file (see
appendix C.1.2, page 66) illustrate the technology. The ui:field attribute of
an XML element is the hook for a Java code element, which is annotated with
@UiField.

4.2.3 Server Implementation

The Protocol Manager’s server application is based Java, too. Plenty of frame-
works and libraries are available for web application development and a lot of
them are already included in the Java Platform, Enterprise Edition (Java EE)
[24]. This section describes the implementation of the server concepts developed
in section 3.2.2 (page 22) using Java EE servlets, GWT, and various frameworks
(see section 4.1.2, page 30).

4.2.3.1 Domain

Domain classes are the data representation of database rows and consist of sim-
ple POJOs. The goal of modeling the domain is mirroring real structures on
the level of abstraction suitable for the software’s purpose. The center of the
Protocol Manager’s domain is a study/therapy plan which results in an imple-
mentation. Figure 4.3 (page 36) shows the UML class diagram on the highest
level. It gives an overview over relations between the major entity classes of
the project. A Plan consists of TaskConfig and Client instances. TaskConfig

36 4. IMPLEMENTATION

is the class that specifies a setup of a Task for a specific Plan. The implemen-
tation of a Plan produces a PlanResult. It consists of TaskResult instances in
combination with ImplementationSession instances to model the procedure im-
plementation. Persistence of a Plan will store the User reference of its “planner”
and every ImplementationSession contains a reference to the person who was
logged in as “implementor”. The User does not have fixed roles since no distinct
rights are necessary for this field of application. This class essentially consists
of login credentials (username and password) and the user’s identity in terms of
the person’s names.

Figure 4.3: This UML class diagram shows the top level domain structure.

A Task can be a simulator scenario, a physical task (e.g. sit-ups), or basically
anything else that is countable or results in numeric data. The domain structure
mirrors this wide variety of possibilities in a flexible way (see figure 4.4, page
37). For this reason a Task has a list of Parameters which are task specific op-
tions for an external system (e.g. the CDS-250). Each Task can have multiple

4. IMPLEMENTATION 37

SubTasks which allows a finer structure of certain steps. SubTasks consist of
Properties and Measures. A Property defines a SubTask by providing addi-
tional numeric information (e.g. “step: 2” or ”speed limit: 40 mph”). A Measure

represents a type of numeric data, this SubTask produces at implementation
time. The following shows a simple example of a simulator task.

Task: SpeedControlStraight

• Parameter: Difficulty (Easy, Medium, Hard)
• SubTasks:

– SpeedKeepingMeasures
∗ Property: TargetSpeed: 35 mph
∗ Measures: MaximumSpeed in mph, MeanSpeed in mph

– SpeedKeepingMeasures
∗ Property: TargetSpeed: 45 mph
∗ Measures: MaximumSpeed in mph, MeanSpeed in mph

– LaneKeepingMeasures
∗ Measures: LeftEdgeTouches, RightEdgeTouches

Clients are usually managed by dedicated software products. In a hospital a
common solution is a hospital information system or, in the case of a study, a
list of participants has to exist. For that reason a Client is basically an exter-
nal identifier tho match with those systems. Names can be used but are not
mandatory.

Figure 4.4: This UML class diagram shows the Task class substructure.

A Plan is essentially a list of TaskConfigs. It involves several options (e.g.
task order enforcing at implementation time). A TaskConfig is linked to
a specific Task and defines it by task-level options, ParameterConfigs, and
SubTaskConfigs. ParameterConfigs define Parameters by specifying one of the

38 4. IMPLEMENTATION

available characteristics. SubTaskConfigs contain information about Criterion
setups. If a Measure is set up to be a Criterion it becomes a termination con-
dition of the implementation of the Task and has to be specified with the exact
condition (e.g. less than five errors). Criterion specification is based on struc-
tured data (e.g. comparison operator and numeric data fields for comparison
values). In addition a Plan contains a list of Clients. This mirrors patient as-
signment to a therapy plan or participant assignment to a study.

The PlanResult class is the data collection part. It contains TaskResults which
contain SubTaskResult, which contain MeasureResults. The latter represents
actual data collected during the implementation. ImplementationSession data
is stored to create a reliable history of sessions which happened during an im-
plementation routine.

4.2.3.2 Data Access Layer and Database

The data access layer is a single class which uses EclipseLink, the JPA refer-
ence implementation, for database access. The original approach to create one
DAO per domain entity is outdated, because it produces a lot of classes which
makes it harder to maintain and contains plenty of redundant code [25]. For this
reason the Protocol Manager has one generic DAO which is called DaoFacade

(see appendix C.2, page 67). In addition it provides typecast methods (e.g.
getAllTasks()). Listing 4.1 (page 39) gives an example of a generic method of
the DaoFacade’s implementation.

4. IMPLEMENTATION 39

public synchronized long persist(AbstractEntity entity) throws

EntityAlreadyExistsException {

checkNotNull(entity, "entity");

try {

entityManager.getTransaction().begin();

entityManager.persist(entity);

entityManager.getTransaction().commit();

} catch (PersistenceException e) {

LOG.error(e.getMessage(), e);

throw new EntityAlreadyExistsException(String.format("Entity of

type ’%s’ with id ’%d’:\n\r" + e.getMessage(), entity.

getClass().getSimpleName(), entity.getId()));

}

refresh(entity);

return entity.getId();

}

Listing 4.1: DaoFacadeImpl.java: persist(AbstractEntity)

The MySQL database scheme is generated by EclipseLink. From that follows that
the database scheme has the same structure as the domain model described in
section 4.2.3.1. The following property in JPA’s persistence.xml file enables
automatic database table generation.

<property name="eclipselink.ddl-generation" value="create-tables" />

4.2.3.3 Service Layer

The service layer consists of three service classes (see appendix C.3, page 68).

The AuthenticationService handles user authentication by checking creden-
tials. This is mandatory for session validation which is the base for application
security and audit logging. Authentication happens by hashing the given pass-
word and comparing it to the database entry for the according user, as shown in
listing 4.2 (page 40).

40 4. IMPLEMENTATION

public User authenticate(String username, byte[] password) {

User user = daoFacade.findUser(username);

if (user != null) {

HashingConfig config = getServerConfig(user);

try {

byte[] hashedPassword = hasher.hash(password, config);

if (Arrays.equals(user.getPasswordHash(), hashedPassword))

{

LOG.exit(user);

return user;

}

} catch (NoSuchAlgorithmException e) {

throw new RuntimeException(String.format("bad algorithm ’%

s’ in database", config.getAlgorithm()), e);

}

}

return null;

}

Listing 4.2: AuthenticationServiceImpl.java: authenticate(String, byte[])

The DataService handles data related functionality. Listing 4.3 shows in a sim-
ple example how database entries are used to provide certain information. This
class’ writing methods can also translate network transmission formats (e.g.XML
strings contained in TDFs) into persistable entities (e.g. an instance of the Task

class).

public boolean isClientInUse(long clientId) {

return daoFacade.getPlanResultCountForClientId(clientId) > 0;

}

Listing 4.3: DataServiceImpl.java: isClientInUse(long)

Audit logging happens in the service layer on top of any data access (see figure
4.5, page 41). Both, the AuditLoggingDataService and the real DataService,
share the same Java interface.

4. IMPLEMENTATION 41

Figure 4.5: Audit logging happens when the data service is requested.

The logging service writes to an audit log file on the filesystem and passes the
request to the actual service. Important information for an entry are timestamp,
the executing user, and internal IDs of the addressed database rows. User infor-
mation is provided by the javax.servlet.http.HttpSession class. Other sen-
sitive information (e.g. patient data) have to be explicitly excluded from those
log files. The following is an exemplary extract of an audit log file in a testing
environment, during a sequence of task uploads.

[...]

Jan 20 2014 09:18:05 PM [hendrik@127.0.0.1] CREATED entity Task#307.

Jan 20 2014 09:18:09 PM [hendrik@127.0.0.1] CREATED entity Task#312.

Jan 20 2014 09:18:14 PM [hendrik@127.0.0.1] CREATED entity Task#316.

[...]

Assembling plan implementation results is the purpose of the
DataExportService. It is basically a Comma-separated Values (CSV) parser
which provides a file that is easy to process for further analysis.

42 4. IMPLEMENTATION

4.2.3.4 Web Service Layer

In a Java context web services are called servlets, which platform specific term
(see “What is a Servlet?” by Mordani [26, p. 1]). Figure 4.6 shows the ad-
justed servlet layer to allow communication with both: GWT’s Remote Proce-
dure Call (RPC) and REST speaking clients. According to the original concept
any network request is filtered by an authentication filter which is independent
from the underlying servlet implementation.

Figure 4.6: The adjusted servlet layer of the Protocol Manager’s server implementation
is capable of serving two different network technologies: GWT’s RPC and REST.

The REST interface is used for communication with the simulator CS. This de-
cision is based on REST being a wide-spread network communication paradigm,
which is already being supported by the CS. JAX-RS provides the base for the
implementation. Although GWT communication could be implemented using
a different technology based on the HTTP, GWT’s RPC framework is easier to
maintain. It communicates in a asynchronous way and provides Java objects on
both ends. The programmer does not have to convert the data into a transfer
format.

4. IMPLEMENTATION 43

GWT Remote Procedure Call (RPC)

RPCs are GWT’s default way of communication. Figure 4.7 illustrates the Java
class and interface hierarchy on client as well as server side. A synchronous and
a mirrored asynchronous version of each service’s interface have to exist in the
shared code module. While the server runs the synchronous implementation,
the client only uses the asynchronous interface. The GWT compiler creates an
asynchronous proxy server which manages communication.

Figure 4.7: This class diagram illustrates the GWT RPC framework. [27]

REST

The REST interface provides access to functionality based on URL requests. To
retrieve data from the server or send it to the server, the common HTTP methods
GET and POST are supported. This makes communication for non-GWT clients
easy. More complex data (e.g. a task) must be transmitted as XML or JSON
media content. The following are examples of how to use the REST interface.

To get a task’s content an HTTP GET request with the according ID as a parame-
ter, is made by the client:

44 4. IMPLEMENTATION

http://<SERVER-ADDRESS>/task?id=123

An HTTP POST of the task media file to the following URL transmits the data to
the server:

http://<SERVER-ADDRESS>/task/create

4.2.4 Security

Section 3.2.5 (page 26) makes aware of common potential security threats.
Some of them were damped or eliminated by architectural design others can
only be obviated by implementation measures.

4.2.4.1 User Identity Management

An important responsibility of a server application developer is protecting user
identities. If an identity is stolen the attacker can get access to sensitive data and
all other protection measures become useless. In addition to encouraging users
to choose strong passwords, there is a number of measures the developer can do
when implementing authentication structures.

The Protocol Manager does not use any external identity management systems
but stores user data in the server’s own database. Since passwords are not stored
but their hash values, the following password related columns are included in
the user table: password hash, hashing algorithm, salt, and number of rounds.
Per default the application uses a SHA-256 [28] hash, salted with a 32 byte long
random sequence, which traverses hashing for 200 rounds. In addition the client
has to request hashing instructions prior authentication which contains informa-
tion to pre-hash the password by splitting the number of rounds between client
and server. This way no plain text password has to be sent over the network.
Because users tend to use the same password for different systems, this mecha-
nism protects the user’s plain password in the worst cases of a man-in-the-middle
attack or server compromising.

4.2.4.2 Structured Query Language (SQL) Injection

Injection can happen when user input is passed to any kind of interpreter. On
the server side this concerns the database SQL processor. A reliable method
to prevent SQL injection is a combination of a query white list and parameter

4. IMPLEMENTATION 45

escaping. JPA defines a mechanism to do exactly that: named queries, which is
a variation of the prepared statements approach (see section 3.2.5.1, page 27).
Listing 4.4 shows an example of a named query. Using it for finding an user
by username makes it impossible to use the login form’s username field for SQL
injection. The server application uses exclusively named queries for database
access.

@NamedQuery(name = User.FIND_BY_USERNAME, query = "SELECT u FROM User u WHERE u

.username=?1")

public class User extends AbstractEntity { ... }

Listing 4.4: JPA Named Query: User.FIND BY USERNAME

4.2.4.3 XSS

The prevention of XSS means checking any non-constant input which is either
passed to the user’s web browser or the JavaScript engine. The GWT Project
considers the following vectors as the only XSS vulnerabilities related to the
framework [29]:

• JavaScript on the host page that is unrelated to GWT

• Code that sets innerHTML on GWT Widget objects

• Using the JSON API to parse untrusted strings

• Unsafe JavaScript Native Interface (JSNI) code

Since there is no JavaScript code unrelated to GWT and the JSON API is not
used, only innerHTML method calls and JSNI code are left as potential risks. The
only native method in the whole project is shown in listing 4.5. It redirects
the browser to an address with mailto: prefix which usually triggers the client
computer’s default e-mail software. The address and the subject are always read
from constant strings which leaves no way of injection for this method.

private native void mailto(String address, String subject) /*-{

$wnd.location = "mailto:" + address + "?subject=" + subject;

}-*/;

Listing 4.5: JSNI: mailto(String, subject)

The last concern is calling the innerHTML method. Whenever it is necessary
to set HTML to a GWT Widget (and thus to the resulting HTML page) GWT’s
SafeHtml type is used. It ensures XSS safety as long as the implementations

46 4. IMPLEMENTATION

from the core GWT library are used. For that reason this project always uses
GWT’s SafeHtmlBuilder class to create instances of SafeHtml.

4.2.4.4 Missing Function Level Access Control

Section 3.2.5.3 (page 28) introduces the authentication filter as a conceptual
solution to a potential circumvention of client side authentication. The Protocol
Manager’s AuthenticationFilter (see the code listing on page 70) intercepts
all requests and checks for session validity. A session is valid if a user was suc-
cessfully authenticated and it is not yet timed out.

4.2.4.5 XSRF

The RPC communication of the server application is protected against XSRF by
using GWT’s XsrfTokenServiceServlet class [30]. For any requests it calculates
the MD5 hash of the session ID and expects the same hash code in form of an
RpcToken in the client request’s content. If they differ, it is either a programming
error or an attempt of XSRF, and access is denied.

The Jersey solution for the same problem is the class CsrfProtectionFilter

[31]. It implements the NSA’s [32] and Stanford University’s [33] guidelines
for protection against XSRF. “The main idea is to check the presence of a cus-
tom header (agreed-upon between the server and a client – e.g. X-CSRF or
X-Requested-By) in all state-changing requests coming from the client.”

Since XSRF protection is based on a contract between client and server applica-
tion, any additional clients using the web service interface have to adapt to the
described methods of XSRF protection.

4. IMPLEMENTATION 47

4.3 User Guidance

User guidance is a very important part of software development in general and
of the focuses of this project. Usability and acceptance amongst the software’s
users have a strong correlation to the guidance through UIs. This sections shows
how certain operations are performed in the Protocol Manager’s two clients.
It uses screenshots from the most recent version as examples. All screenshots
were made in a testing installation of the software that mirrors the live system
in functionality but uses no actual patient data. The involved tasks are real
representations of CDS-250 scenarios.

For the use in CU-ICAR some terms deviate from terms used in this document.
The following is a mapping of known terms and their synonyms used in this
section’s examples.

• plan = protocol

• property = option

• planning client = protocol setup

• implementation client = data collection

4.3.1 Task Upload

The first important step on the planning side is creating a list of available tasks.
It is the base for any study or therapy protocol. To ensure that the tasks are
synchronized with specifications on other systems, a manual creation or editing
is not possible. A task definition file has to exist which ideally is exported from
the according external device.

The protocol setup client provides an overview over available tasks (see figure
4.8, page 48). On the bottom of this page is a small form for uploading a new
task. A TDF in XML or JSON can be selected and after successful parsing on the
server-side it will be available in the overview list. From this view selection of a
single task is possible, which gives more detailed information and the option to
delete the task.

48 4. IMPLEMENTATION

Figure 4.8: The task upload is initiated from the overview.

4.3.2 Client Creation

Clients can be introduced to the system using a short form (see figure 4.9, page
49). The only required field is external ID which links it to another system or
list. After successful creation a new client will appear in the overview list. Client
fields can be edited at a later time but the external ID is not changeable to
prevent loss of identity. An entry can be deleted unless it is assigned to a protocol
or is referenced by implementation results.

4. IMPLEMENTATION 49

Figure 4.9: This form acquires information for client creation.

4.3.3 Protocol Creation

Once the system knows tasks a protocol can be created. Figure 4.10 (page 50)
shows the form which is used for assemblage. It consists of a field for labeling,
the option to fix the task order, and selection boxes for adding tasks and clients.
Up and down arrows allow to change the task order at any time during the
process.

50 4. IMPLEMENTATION

Figure 4.10: The assemblage of a protocol uses this form.

When a task is added a window (see figure 4.11, page 51) pops up to specify
it for this particular setup. It can be labeled, options have to be defined, and
criteria can be set. A task can also be added multiple times with different, or the
same, configurations.

4. IMPLEMENTATION 51

Figure 4.11: The task configuration window pops up when the user wants to add a task
to the protocol.

Figure 4.12 (page 52) shows a protocol’s detailed view after creation. In addition
to deletion and editing it can also be duplicated. The latter means all configura-
tions will be copied into a fresh protocol which has to be labeled differently.

52 4. IMPLEMENTATION

Figure 4.12: This view shows detailed information of a protocol.

Once a protocol exists it can be implemented. To do so in the user has to switch
to the data collection client. In other fields of application this client may be
included in another system like a dedicated CS.

4.3.4 Protocol Implementation

To start the data collection the user has to select a protocol and a client. Either
can be selected first since both detailed views include a Collect Data button in the
bottom right. The implementation view (see figure 4.13, page 53) shows a list of
tasks defined for this protocol and a field for session notes. When the fixed task
order option is activated, only the upcoming task can be selected. Otherwise,
like in this example, the implementor can choose any to be next.

4. IMPLEMENTATION 53

Figure 4.13: Protocol implementation starts from this view. Tasks can be selected from
the list to enter measurements.

When a task is selected a data collection window pops up (see figure 4.14, page
54). It shows the task configuration’s options (left) and a trial-wise measure
input table (right). After each trial the user enters the according measures and
presses the Check Trial button. Optional notes can be attached to each trial
separately if something comes to the implementors attention.

54 4. IMPLEMENTATION

Figure 4.14: When a task was selected from the initial view this windows pops up to
collect the session’s measurements.

Once a task is successfully completed (see figure 4.15, page 55) the software
returns to the initial implementation view. Success means that all predefined
criteria are met. It is also possible to save the interim results and resume the
data collection at a later time.

4. IMPLEMENTATION 55

Figure 4.15: A green check-mark indicates the successful criterion check. Afterwards
the user will be returned to the initial implementation view.

The initial view shows the state of a task as soon as the data collection started
(see figure 4.16, page 56). A green check mark signals success. If the data
collection for a task was not finished, the implementor can continue at a later
time.

56 4. IMPLEMENTATION

Figure 4.16: The implementation view shows a green check-mark next to the task when
it is successfully completed.

At any time the user can decide to save data and leave the implementation by
pressing the Save button. Any notes entered will be stored, together with a
timestamp and a reference to the user logged in, for this session and can not be
altered anymore. Afterwards the software redirects the user to the implementa-
tion result page.

4.3.5 Result Review and Export

Data that is already collected can be reviewed in the data collection client. Figure
4.17 (page 57) shows the implementation result view. The button Resume Data
Collection allows resuming as long as not all tasks are completed. In this case
it is greyed out like in the example. If resuming is available the user will be

4. IMPLEMENTATION 57

returned to the initial implementation view. Successfully completed tasks are
marked green while unsuccessful ones are marked red.

Figure 4.17: The implementation results are presented in a design similar to the proto-
col view. A green header indicates a successfully completed task.

Collected data can not only be reviewed in the software it can also be exported
to a CSV file. Export is available protocol-wise (see figure 4.18a, page 58) and
client-wise (see figure 4.18b, page 58). The export buttons can be found in the
detailed view of a protocol or client. Both exports contain the collected measures
sorted by tasks. Each measure has a timestamp of collection.

58 4. IMPLEMENTATION

(a) The protocol-wise result export lists clients, who implemented the protocol, and
their according measurements.

(b) The client-wise result export lists all protocols the person attended in sessions.

Figure 4.18: The two screenshots show result CSV files opened in Microsoft Excel. The
upper file is the result of export for a specific plan and the lower file the result for a
specific client.

5

Conclusion

This chapter summarizes the theoretical and practical work and passes the ex-
perience, gained during the process, on to potential follow-up projects. The
validation presents requirements and results. The outlook shows opportunities
discovered and ideas developed during the whole process.

5.1 Validation

This thesis’ goal is to provide a conceptual solution for a therapy and study plan-
ning and implementation software system in a driving simulator environment.
The reference implementation’s goal is to apply the demands and guidelines, the
conceptional part developed, to a real life environment. In the following the
results, in terms of their accomplishment of the proposed goals, are validated.

5.1.1 Communication with other Systems

Section 3.1.2.1 (page 13) describes the technical infrastructure of a driving sim-
ulator environment. The concept is required to provide an interface which makes
interaction with the two major software products, the CS and SS, possible. Dur-
ing the concept design it was verified that direct data transmission from the SS is
not necessary. External communication is limited to the CS, which is supported
by concept.

The reference implementation does not accomplish the goal of communication
with the CS. It represents an intermediate version of the concept. Under this

59

60 5. CONCLUSION

thesis it was not possible to develop the CS-side interface for communication.
For this reason the implementation is based on exclusively manual data input
during the data collection process. However, first tests showed that simple REST
based requests (e.g. authentication) from the simulator platform to the server’s
web service do work.

5.1.2 Functions

The two important user functions, plan creation and implementation, are defined
in section 3.1.2.2 (page 14). For each of them a dedicated client application is
specified. The planning client is dedicated to plan creation and the according
preconditions tasks and clients. Its counterpart, the implementation client, pro-
vides data collection. All required user functions, including their sub functions,
are supported by the conceptional solution.

In the reference implementation two separate standalone client applications ex-
ists, as defined by the architecture. They have been tested by the researchers
under the case study. Each of them provides the specified functionality to the
full extend.

5.1.3 Target Users

The target users defined in section 3.1.2.3 (page 16) are clinicians and data an-
alysts. Design of the concept and development of the reference implementation
happened in close cooperation with the human factors researchers at CU-ICAR.
This team consist of psychologists and engineers, and can draw on clinical as
well as research experience. The author believes that they are a representative
target users although no active clinicians were involved. A potential follow-up
project to refine the software should extend the testing team to clinical staff.

The incorporation of target users in the development process is a significant
advantage of this project and the software’s quality.

5.1.4 Legal Constraints

Based on the relevance of the HIPAA for this project (see section 3.1.2.4, page
16) technical safeguards are part of the concept as well as implementation. Au-
tomatic session termination and audit logging are part of the concept. In addi-

5. CONCLUSION 61

tion the productive installation at CU-ICAR involves transmission integrity and
encryption via TLS [34], unique usernames, and database access control. Im-
plications of the HIPAA which are not part of the concept or implementation
are: automatic data encryption and decryption (besides transmission encryp-
tion), and database encryption and versioned backups.

The reference implementation is not certified in terms of its application security.
Under such a process it has to be clarified to what extend the missing technical
safeguards need to be implemented, considering other protecting factors (e.g.
physical protection of the host computers). A definite statement to the security
is, for the explained reasons, not possible at the time of publishing.

5.1.5 Expected Benefits

The most important benefit that is expected is the prevention of errors in com-
plex data collection scenarios. Typing errors naturally occur when data is entered
by hand into a system. In the concept this issue is solved by completely eliminat-
ing manual data input. It presumes that the data producing device is capable of
sending occurring measurements directly to the server application. The server
application provides a web interface to fetch and store data and provide it again
in a processable format to the analyzing user. However, the reference imple-
mentation does rely on manual data input. A reduction of errors should still
be evident by using the mechanism of data field validation (see section 3.2.3.2,
page 25).

A secondary expected benefit is the increase of time efficiency. The basics of plan
management, especially reutilization, intend to support the planning therapist. A
list of available tasks and various plan settings are expected to prevent outdated
or misleading information. The effect expected from those mechanisms is less
time required for the planning process. For data collecting users the concept of
client integration with a CS might be the most interesting feature. It allows the
user to focus primarily on the client by reducing the number of different tools
from three to one. The time-consuming process of filling out Microsoft Excel
sheets is no longer necessary.

At the time of publishing the effects of error and time reduction have not been
conclusively validated by a pilot study.

62 5. CONCLUSION

5.2 Outlook

This thesis presents the current state by the time of publishing. The author
intends to initiate further development under a follow-up project. This section
describes ideas as well as concrete plans of upcoming events.

The upcoming milestone for the Protocol Manager is be a real life study using
the software performed in CU-ICAR in early 2014. It will be a solid base for the
validation of this interim setup and should reveal a trend towards a higher level
of time efficiency.

Once the concept is fully validated, the way is paved for finding new fields of ap-
plication and environments, for example institutions that use driving simulators
or other therapy devices. Especially a hospital is a good environment to set up a
second installation to gain clinical experience. This step requires a certification
in terms of data security and HIPAA compliance because real patient data will be
processed.

A future step will be the full integration into the existing software infrastructure
by extending the CDS-250 CS to the implementation client’s functionality. The
generated feedback to the concept may reveal performance leaks, the possibility
of new features to increase utility etc. The following tries to inspire additional
features to extend the software by additional functionality.

• Enhanced plan management (e.g. extended template function)

• Connectors to other external systems (e.g. for user management, more
automatic data transmission etc.) as well devices (e.g. other simulator
types)

• More flexible criterion definition (e.g. by using a formula editor)

• Enhanced result export (e.g. by introducing an interpreter of regular ex-
pressions)

Appendices

A HIPAA Extracts

§§§164.312(a)(1) Access control. Implement technical policies and procedures for
electronic information systems that maintain electronic protected health infor-
mation to allow access only to those persons or software programs that have
been granted access rights as specified in §164.308(a)(4).

§§§164.312(b) Audit controls. Implement hardware, software, and/or procedural
mechanisms that record and examine activity in information systems that contain
or use electronic protected health information.

§§§164.312(c)(1) Integrity. Implement policies and procedures to protect elec-
tronic protected health information from improper alteration or destruction.

§§§164.312(e)(1) Transmission security. Implement technical security measures
to guard against unauthorized access to electronic protected health information
that is being transmitted over an electronic communications network.

[5]

63

B Format Definitions

B.1 Task.dtd

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE task [

<!ATTLIST task id ID "0">

<!ELEMENT task (label,description?,externalSource?,externalId?,uploadDate?,

options?,subTasks)>

<!ELEMENT label (#CDATA)>

<!ELEMENT description (#CDATA)>

<!ELEMENT externalSource (#CDATA)>

<!ELEMENT externalId (#CDATA)>

<!ELEMENT uploadDate (#CDATA)>

<!-- Options/Parameters -->

<!ELEMENT options (option+)>

<!ELEMENT option (label,externalId?,values)>

<!ATTLIST option id ID "0">

<!ELEMENT values (value+)>

<!ELEMENT value (#CDATA)>

<!-- SubTasks -->

<!ELEMENT subTasks (subTask+)>

<!ELEMENT subTask (label,externalId?,properties?,measures?)>

<!ATTLIST subTask id ID "0">

<!-- SubTasks: Properties -->

<!ELEMENT properties (property+)>

<!ELEMENT property (externalId?,value,unit?)>

<!ATTLIST property id ID "0">

<!ELEMENT value (#CDATA)>

<!ELEMENT unit (#CDATA)>

<!-- SubTasks: Measures -->

<!ELEMENT measures (measure+)>

<!ELEMENT measure (externalId?,lowerBound?,upperBound?,unit?)>

<!ATTLIST measure id ID "0">

<!ELEMENT lowerBound (#CDATA)>

<!ELEMENT upperBound (#CDATA)>

]>

64

C Code Extracts

C.1 UiBinder Example

C.1.1 TaskOverviewViewDesktopImpl.ui.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ui:UiBinder SYSTEM "http://dl.google.com/gwt/DTD/xhtml.ent">

<ui:UiBinder xmlns:ui="urn:ui:com.google.gwt.uibinder" xmlns:g="urn:import:com.

google.gwt.user.client.ui" xmlns:d="urn:import:edu.clemson.carsim.client.

view.desktop.widget">

<ui:with field="cc" type="edu.clemson.carsim.client.i18n.I18NConstants" />

<ui:with field="st" type="edu.clemson.carsim.client.resources.StyleNames" />

<g:SimplePanel styleName="{st.contentPanel}">

<d:SmartHeaderPanel styleName="{st.innerContent}">

<g:Label text="{cc.taskOverview}" styleName="{st.heading} {st.pageHeader}"

/>

<g:SimplePanel styleName="{st.scrollPanel}">

<g:VerticalPanel width="100%">

<d:SmartFlexTable ui:field="taskTable" />

<g:Label ui:field="emptyMessageOutput" visible="false" />

</g:VerticalPanel>

</g:SimplePanel>

<g:FormPanel styleName="{st.pageFooter}" ui:field="uploadForm">

<g:HTMLPanel>

<table width="100%">

<tr>

<td align="right" valign="middle">

<g:FileUpload ui:field="fileUpload" name="uploadFile" />

<g:Button ui:field="submitButton" text="{cc.uploadTaskFile}"

enabled="false" />

</td>

</tr>

</table>

</g:HTMLPanel>

</g:FormPanel>

</d:SmartHeaderPanel>

</g:SimplePanel>

</ui:UiBinder>

65

C.1.2 TaskOverviewViewDesktopImpl.java

public final class TaskOverviewViewDesktopImpl extends

AbstractOverviewViewDesktopImpl implements TaskOverviewView {

interface Binder extends UiBinder<Widget, TaskOverviewViewDesktopImpl>

{}

private static final Binder binder = GWT.create(Binder.class);

private Presenter presenter;

@UiField

SmartFlexTable taskTable;

@UiField

FormPanel uploadForm;

@UiField

FileUpload fileUpload;

@UiField

Button submitButton;

@UiField

Label emptyMessageOutput;

public TaskOverviewViewDesktopImpl() {

initWidget(binder.createAndBindUi(this));

}

@Override

public void setPresenter(Presenter presenter) {

this.presenter = presenter;

}

[...]

}

66

C.2 DaoFacade.java

public interface DaoFacade {

long persist(AbstractEntity entity) throws IllegalArgumentException,

EntityAlreadyExistsException;

<E extends AbstractEntity> E merge(E entity) throws

IllegalArgumentException, EntityNotFoundException;

void delete(AbstractEntity entity) throws IllegalArgumentException;

<E extends AbstractEntity> E find(Class<E> type, long id) throws

IllegalArgumentException;

User findUser(String username) throws IllegalArgumentException;

List<Task> getAllTasks();

List<Plan> getAllPlans();

List<PlanResult> getAllResults();

List<Client> getAllClients();

int getTaskConfigCountForTaskId(long taskId);

int getPlanResultCountForPlanId(long planId);

int getPlanResultCountForClientId(long clientId);

}

67

C.3 Service Layer Interfaces

C.3.1 AuthenticationService.java

public interface AuthenticationService {

User authenticate(String username, byte[] password);

User getUser(String username);

HashingConfig getClientConfig(String username);

}

68

C.3.2 DataService.java

public interface DataService {

long create(AbstractEntity entity) throws IllegalArgumentException,

EntityAlreadyExistsException;

<E extends AbstractEntity> E update(E entity) throws

IllegalArgumentException,

EntityNotFoundException;

<E extends AbstractEntity> void delete(Class<E> type, long id) throws

IllegalArgumentException,

EntityNotFoundException, DeleteForbiddenException;

<E extends AbstractEntity> E find(Class<E> type, long id) throws

IllegalArgumentException;

User findUser(String username) throws IllegalArgumentException;

List<Task> getAllTasks();

List<Plan> getAllPlans();

List<PlanResult> getAllPlanResults();

List<Client> getAllClients();

long createTaskFromXml(String xml) throws EntityAlreadyExistsException,

BadFormatException;

long createTaskFromJson(String json) throws EntityAlreadyExistsException

, BadFormatException;

boolean isTaskInUse(long taskId);

boolean isPlanInUse(long planId);

boolean isClientInUse(long clientId);

}

69

C.3.3 DataExportService.java

public interface DataExportService {

String convertPlan(Plan plan);

String convertClient(Client client);

}

C.4 AuthenticationFilter.java

@Singleton

public final class AuthenticationFilter implements Filter {

@Override

public void doFilter(ServletRequest req, ServletResponse resp,

FilterChain chain) throws IOException, ServletException {

HttpServletRequest request = (HttpServletRequest) req;

HttpServletResponse response = (HttpServletResponse) resp;

if (SessionUtil.isValid(request.getSession()))

chain.doFilter(req, resp);

else

response.sendError(HttpServletResponse.SC_UNAUTHORIZED);

}

}

70

Bibliography

[1] M. Rapoport, B. Weaver, A. Kiss, C. Zucchero Sarracini, H. Moller, N. Her-
rmann, K. Lanctôt, B. Murray, and M. Bédard. “The Effects of Donepezil
on Computer-Simulated Driving Ability Among Healthy Older Adults”. In:
Journal of Clinical Psychopharmacology 31.5 (Oct. 2011), pp. 587–592.

[2] United States Department of Health and Human Services (HHS). HIPAA
Administrative Simplification Statute and Rules. URL: http://www.hhs.
gov/ocr/privacy/hipaa/administrative/securityrule/index.html

(visited on 10/15/2013).

[3] Institute of Electrical and Electronics Engineers (IEEE). Recommended Prac-
tice for Software Requirements Specifications. 1998. ISBN: 0-7381-0332-2.

[4] A. Cockburn. Writing Effective Use Cases. Agile Software Development Se-
ries. Addison-Wesley, 2001. ISBN: 978-0-2017-0225-5.

[5] National Institute of Standards and Technology (NIST). Health Insurance
Portability and Accountability Act, Administrative Simplification. Feb. 2006.

[6] M. Potel. MVP: Model-View-Presenter. The Taligent Programming Model for
C++ and Java. Tech. rep. Taligent, Inc., 1996.

[7] S. Burbeck. Applications Programming in Smalltalk-80(TM): How to use
Model-View-Controller (MVC). 1992. URL: http://st-www.cs.illinois.
edu/users/smarch/st-docs/mvc.html (visited on 01/28/2014).

[8] M. Fowler. Supervising Controller. URL: http://www.martinfowler.com/
eaaDev/SupervisingPresenter.html (visited on 01/28/2014).

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

71

http://www.hhs.gov/ocr/privacy/hipaa/administrative/securityrule/index.html
http://www.hhs.gov/ocr/privacy/hipaa/administrative/securityrule/index.html
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://www.martinfowler.com/eaaDev/SupervisingPresenter.html
http://www.martinfowler.com/eaaDev/SupervisingPresenter.html

72 BIBLIOGRAPHY

[10] Microsoft. SOA in the Real World. Tech. rep. Microsoft, 2014. URL: http:
//msdn.microsoft.com/en- us/library/bb833022.aspx (visited on
01/28/2014).

[11] Sun Microsystems, Inc. Core J2EE Patterns - Data Access Object. Tech.
rep. Sun Microsystems, Inc., 2002. URL: http : / / www . oracle . com /

technetwork/java/dataaccessobject-138824.html (visited on 01/28/2014).

[12] R. T. Fielding. “Architectural Styles and the Design of Network-based Soft-
ware Architectures”. PhD thesis. University of California, 2000.

[13] N. Smithline and T. Gigler. OWASP Top 10 Application Security Risks -
2013. URL: https://www.owasp.org/index.php?title=Top_10_2013-
Top_10&oldid=154333 (visited on 12/29/2013).

[14] M. Shema. Hacking Web Apps. Syngress, Aug. 2012. ISBN: 978-1-59749-
951-4.

[15] X. Lin, P. Zavarsky, R. Ruhl, and D. Lindskog. “Threat Modeling for CSRF
Attacks”. In: International Conference on Computational Science and Engi-
neering (2009), pp. 486–491.

[16] S. Pericas-Geertsen and M. Potociar. JAX-RS: JavaTM API for RESTful Web
Services. May 2013.

[17] S. Vajjhala and J. Fialli. The JavaTM Architecture for XML Binding (JAXB)
2.0. Apr. 2006.

[18] L. DeMichiel. JSR 338: JavaTM Persistence API, Version 2.1. Apr. 2013.

[19] L. Andersen. JDBCTM 4.0 Specification. Nov. 2006.

[20] Microsoft. Data Transfer Object. URL: http://msdn.microsoft.com/en-
us/library/ms978717.aspx (visited on 01/29/2014).

[21] GWT-Project. MVP Activities And Places. URL: http://www.gwtproject.
org/doc/latest/DevGuideMvpActivitiesAndPlaces.html (visited on
01/06/2014).

[22] C. Ramsdale. GWT MVP. URL: http://www.gwtproject.org/articles/
mvp-architecture.html (visited on 12/01/2013).

[23] GWT-Project. UiBinder. URL: http://www.gwtproject.org/doc/latest/
DevGuideUiBinder.html (visited on 01/07/2014).

[24] L. DeMichiel and B. Shannon. JavaTM Platform, Enterprise Edition (Java
EE) Specification, v7. Apr. 2013.

http://msdn.microsoft.com/en-us/library/bb833022.aspx
http://msdn.microsoft.com/en-us/library/bb833022.aspx
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html
https://www.owasp.org/index.php?title=Top_10_2013-Top_10&oldid=154333
https://www.owasp.org/index.php?title=Top_10_2013-Top_10&oldid=154333
http://msdn.microsoft.com/en-us/library/ms978717.aspx
http://msdn.microsoft.com/en-us/library/ms978717.aspx
http://www.gwtproject.org/doc/latest/DevGuideMvpActivitiesAndPlaces.html
http://www.gwtproject.org/doc/latest/DevGuideMvpActivitiesAndPlaces.html
http://www.gwtproject.org/articles/mvp-architecture.html
http://www.gwtproject.org/articles/mvp-architecture.html
http://www.gwtproject.org/doc/latest/DevGuideUiBinder.html
http://www.gwtproject.org/doc/latest/DevGuideUiBinder.html

BIBLIOGRAPHY 73

[25] P. Mettqvist. Don’t repeat the DAO! URL: http://www.ibm.com/developerworks/
library/j-genericdao/ (visited on 01/29/2014).

[26] R. Mordani. JavaTM Servlet Specification. Dec. 2009.

[27] GWT-Project. GWT Remote Procedure Calls. URL: http://www.gwtproject.
org/doc/latest/DevGuideServerCommunication.html (visited on 12/04/2013).

[28] National Institute of Standards and Technology (NIST). FIPS PUB 180-4:
Secure Hash Standard (SHS). Tech. rep. National Institute of Standards
and Technology, Mar. 2012.

[29] D. Morrill. GWT Security. URL: http://www.gwtproject.org/articles/
security_for_gwt_applications.html (visited on 12/05/2013).

[30] GWT-Project. Security Rpc Xsrf. URL: http://www.gwtproject.org/doc/
latest/DevGuideSecurityRpcXsrf.html (visited on 01/12/2014).

[31] M. Matula. Jersey and Cross-Site Request Forgery (CSRF). URL: http://
blog.alutam.com/2011/09/14/jersey- and- cross- site- request-

forgery-csrf/ (visited on 01/12/2014).

[32] National Security Agency (NSA). Guidelines for Implementation of REST.
Tech. rep. National Security Agency, Mar. 2011.

[33] A. Barth, C. Jackson, and J. C. Mitchell. “Robust Defenses for Cross-Site
Request Forgery”. In: 15th ACM Conference on Computer and Communica-
tions Security (Oct. 2008).

[34] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol:
Version 1.2. Aug. 2008.

http://www.ibm.com/developerworks/library/j-genericdao/
http://www.ibm.com/developerworks/library/j-genericdao/
http://www.gwtproject.org/doc/latest/DevGuideServerCommunication.html
http://www.gwtproject.org/doc/latest/DevGuideServerCommunication.html
http://www.gwtproject.org/articles/security_for_gwt_applications.html
http://www.gwtproject.org/articles/security_for_gwt_applications.html
http://www.gwtproject.org/doc/latest/DevGuideSecurityRpcXsrf.html
http://www.gwtproject.org/doc/latest/DevGuideSecurityRpcXsrf.html
http://blog.alutam.com/2011/09/14/jersey-and-cross-site-request-forgery-csrf/
http://blog.alutam.com/2011/09/14/jersey-and-cross-site-request-forgery-csrf/
http://blog.alutam.com/2011/09/14/jersey-and-cross-site-request-forgery-csrf/

74

Affidavit

I hereby declare that the master’s thesis I have submitted is my own work. Where
the work of others has been quoted or reproduced, the source is always given.

This thesis or parts have not yet been presented to an university as part of an
examination or degree.

Heilbronn; January 30, 2014
Hendrik Graupner

75

76

	List of Figures
	List of Tables
	List of Code Listings
	List of Acronyms
	Glossary
	Introduction
	Background
	Motivation
	Case Study
	Objective
	Document Structure

	Basics
	Terms
	Current CDS Procedure

	Concept
	Requirements
	Methods of Gathering
	Requirements Specification

	Architecture
	Client Architecture
	Server Architecture
	Input Validation
	TDF Format
	Security Considerations

	Implementation
	Implementation Environment
	Programming Language: Java
	Frameworks
	IDE: Eclipse
	Hardware in CU-ICAR

	Implementation Details
	Modular Code Structure
	Client Implementation
	Server Implementation
	Security

	User Guidance
	Task Upload
	Client Creation
	Protocol Creation
	Protocol Implementation
	Result Review and Export

	Conclusion
	Validation
	Communication with other Systems
	Functions
	Target Users
	Legal Constraints
	Expected Benefits

	Outlook

	Appendices
	HIPAA Extracts
	Format Definitions
	Task.dtd

	Code Extracts
	UiBinder Example
	DaoFacade.java
	Service Layer Interfaces
	AuthenticationFilter.java

	Bibliography
	Affidavit

